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Thesis
Everyone has the same color.

Demonstration
The black sheep idiom is a well-documented research subject in the litera-
ture, as shepherds have existed from the depths of time, and have always
been intrigued by that mystery (Marques et al., 1988). This demonstration
will hence be based on this subject.
In a herd populated with a black and a white sheep, the white sheep is
the only white sheep of the herd. It is thus an outsider in its herd and
can therefore be considered as the black sheep of the herd. Hence, both
sheep are black. The herd is thus composed of two black sheep. As all the
sheep of the herd have the same color, there is no outsider, i.e. no black
sheep, and both sheep are thus white. All the sheep thus have the same
color. As it was demonstrated that humans are like sheep (Raafat et al.,
2009), humans therefore have the same color. QED.

Mickaël Tits
September 25, 2018
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Abstract

The present thesis is a contribution to the field of human motion analysis. It studies
the possibilities for a computer to interpret human gestures, and more specifically to
evaluate the quality of expert gestures. These gestures are generally learned through
an empirical process, limited to the subjectivity and own perception of the teacher. In
order to objectify the evaluation of the quality of these gestures, researchers have pro-
posed various measurable criteria. However, these measurements are still generally
based on human observation.

Enabled by significant steps in the development of Motion Capture (MoCap) and arti-
ficial intelligence technologies, research on automatic gesture evaluation has sparked
a new interest, due to its applications in education, health and entertainment. This
research field is, however, recent and sparsely explored. The few studies on the sub-
ject generally focus on a small dataset, limited to a specific type of gestures, and a
data representation specific to the studied discipline, hereby limiting the validity of
their results. Moreover, the few proposed methods are rarely compared, due to the
lack of available benchmark datasets and of reproducibility on other types of data.

The aim of this thesis is therefore to develop a generic framework for the develop-
ment of an evaluation model for the expertise of a gesture. The methods proposed
in this framework are designed to be reusable on various types of data and in vari-
ous contexts. The framework consists of six sequential steps, for each of which an
original contribution is proposed in the present thesis:

Firstly, a benchmark dataset is proposed to promote further research in the domain
and allow method comparison. The dataset consists of repetitions of 13 Taijiquan
techniques by 12 participants of various levels from novice to expert, resulting in a
total of 2200 gestures.

Secondly, the MoCap data must be processed, in order to ensure the use of high-
quality data for the design of an evaluation model. To that end, an original method
is proposed for automatic and robust recovery of optical MoCap data, based on a
probabilistic averaging of different individual recovery models, and the application
of automatic skeleton constraints. In an experiment where missing data were simu-
lated into a MoCap dataset, the proposed method outperforms various methods of
the literature, independently of gap length, sequence duration and the number of
simultaneous gaps.
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Thirdly, various motion features are proposed for the representation of various as-
pects of motion, potentially correlated with different components of expertise. Ad-
ditionally, a new set of features is proposed, inspired by Taijiquan ergonomic prin-
ciples. In this respect, 36 new motion features, representing aspects of stability, joint
alignments, joint optimal angles and fluidity are presented.

Fourthly, the features must be processed to provide a more relevant representation
of expertise. In the present work, the morphology influence on motion is addressed.
Morphology is an individual factor that has a great influence on motion, but is not
related to expertise. A novel method is therefore proposed for the extraction of
motion features independent of the morphology. From the linear modeling of the
relation of each feature with a morphological factor, residues are extracted, provid-
ing a morphology-independent version of the motion features. As a consequence,
the resulting features are (i) less correlated between each other, and (ii) enable a
more relevant comparison between the gestures of various individuals, hereby al-
lowing a more relevant modeling of expertise. Results show that the method, termed
as Morphology-Independent Residual Feature Extraction (MIRFE) outperforms a
baseline method (skeleton scaling) in (i) reducing the correlation with the morpho-
logical factor, and in (ii) improving the correlation with skill, for various gestures of
the Taijiquan MoCap dataset, and for a large set of motion features.

Fifthly, an evaluation model must be developed from these features, allowing the
prediction of the expertise level on a new gesture performed by a new user. A model
based on feature statistics, dimension reduction and regression is proposed. The
model is designed to be used with any motion feature, in order to be generic and
relevant in different contexts, including various users and various types of gestural
disciplines. Trained on the Taijiquan MoCap dataset, the model outperforms two
methods of the literature for the evaluation of gestures of a new user, with a mean
relative prediction error of 10% (R = 0.909).

Additionally, a first exploration of the use of deep learning for gesture evaluation is
proposed. To that end, MoCap sequences are represented as abstract RGB images,
and used for transfer learning on a pre-trained image classification convolutional
neural network. Despite a lower performance (R = 0.518), an analysis of the results
suggests that the model could achieve better performance given a larger dataset,
including a larger number of novices and experts.

Sixthly, and finally, to allow a practical use of the evaluation model, a feedback
system must provide an intuitive interpretation of the predicted level, allowing an
effective understanding and assimilation by the user of the system. In the present
work, an original and generic feedback system is proposed, based on the synthesis
of an improved gesture, and its comparison to the user’s original gesture. Both
intuitive and precise feedback are proposed, based on (i) synchronized visualization
of both gestures, and (ii) striped images highlighting the motion features that need
improvement. As a validation of the proposed method, examples of feedback are
proposed for various sequences of the Taijiquan MoCap dataset, showing its practical
interest for objective and automated supervision.
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Introduction

Context

The present thesis is a contribution to the field of human motion analysis. It studies
the possibilities for a computer to interpret human gestures, and more specifically to
evaluate the quality of an ’expert gesture’. An expert gesture can be defined as any
complex and precise gesture requiring a high level of motor control acquired through
experience, i.e. a long training process. This type of gesture is encountered in various
disciplines in sports, music, dance, or in manual works like surgery, pottery and
calligraphy. All these gestures are usually learned through a long training process,
either self-learned or guided by a teacher. This process is usually empirical, and
limited to the subjective perception of the discipline by the learner or the teacher.
The perception of a gesture and the underlying characteristics defining expertise are
indeed related to one’s unique body, experience and personality, and are therefore
partly subjective. Moreover, this perception is generally hard to describe with words
and even harder to quantify, even for an expert of the discipline.

In order to objectify the evaluation of the quality of these gestures, researchers
have proposed various measurable criteria, somehow defining what expertise is, also
termed motor control, dexterity, or skills according to the research domain. In the
field of physiotherapy, various quantitative tests were developed to evaluate the gross
and fine motor skills of patients, with various exercises for measuring motor preci-
sion, integration, manual dexterity, uni- and bilateral coordination, balance, agility,
and strength (Deitz et al., 2007; Cools et al., 2009). These tests have been widely used
for diagnosis with patients with cerebral palsy or after a physical injury, or with
children with development disorders. In ergonomics, evaluation matrices have been
developed to measure the quality of manual works in terms of ergonomy, by evalu-
ating muscular fatigue and risks of injury (McAtamney and Corlett, 1993; Kee and
Karwowski, 2001). In a more artistic context, Laban movement analysis (LMA) is a
method allowing the description and interpretation of motion in terms of intention,
aesthetics and efforts, and is used by dancers, actors, but also by physiotherapists
(Bartenieff and Lewis, 1980; Newlove, 1993). More specifically, the particular disci-
pline of surgery has drawn a lot of attention, due to the impact of these gestures on
patient health. In this context, various evaluation matrices have also been proposed
for the supervision of the surgical training (Reiley et al., 2011).

Most of these gesture evaluation methods are still based on human observation or are
limited to basic measurements of the motion, such as the running speed, or the du-
ration of a manual work. However, the use of computer technologies could provide
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more consistent, automatic and objective solutions to this issue. Recent motion cap-
ture (MoCap) technologies allow the accurate and automatic recording of the motion
of the entire body. On the other hand, artificial intelligence technologies, and more
particularly machine learning, allow a computer to interpret various types of data,
based on automatic algorithms modeling the relations between these data. These
technologies could be used together, allowing an automatic modeling of expertise
from MoCap data representing the analyzed gestures accurately. The models de-
veloped could therefore be more precise and objective than the human observer, and
could find applications in various areas. In sports, wearable MoCap sensors are more
and more used for the monitoring of athletes and the evaluation of their performance
(Camomilla et al., 2018). In the field of surgery, models based on artificial intelligence
have been tested for the evaluation of the surgical process (Lalys and Jannin, 2014). In
a medical context, MoCap has been used to investigate the long-term effect of med-
ication on tremor for patients with Parkinson’s disease (Van Someren et al., 1998).
More recently, Tahir and Manap (2012) tested machine learning algorithms for the
detection of the Parkinson’s disease from walking patterns. In the context of sports
competition, Young and Reinkensmeyer (2014) proposed a model based on machine
learning for automatic and objective jury grades in an Olympic diving competition.
In various contexts, specific computational features have been developed to objec-
tively interpret various expertise criteria in gestures, including LMA (Aristidou and
Chrysanthou, 2014), ergonomics (Andreoni et al., 2009) and physiotherapy (Harrison
et al., 2007).

In general, automatic gesture evaluation models could be used either by a learner
for automated supervision during the learning of an expert gesture, or as a tool by
a teacher, a sports coach, a choreographer or a medical doctor for a more consistent
and objective monitoring. Finally, the video-game industry could use these models
for the development of new video games, allowing the learning of sports and musical
gestures in an entertaining context.

Motivations and original contributions

Due to the recent spreading of MoCap and machine learning technologies, and due
to the range of potential applications, the analysis of expert gestures has recently
sparked a particular interest in research. This research field is, however, recent and
sparsely explored. The few studies on the subject generally focus on a small dataset,
limited to a specific type of gesture, and a data representation specific to the studied
discipline, hereby limiting the validity of their results. Moreover, the few proposed
methods are rarely compared, due to the lack of available benchmark datasets and
of reproducibility on other types of data.

The aim of this thesis is therefore to develop a generic framework for the develop-
ment of an evaluation model for the expertise of a gesture. The methods proposed in
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this framework are designed to be reusable on various types of data and in various
contexts. Moreover, a benchmark dataset is proposed to promote further research
in the domain and allow method comparison. The proposed models must be de-
signed to take into consideration various aspects of motion, in order to be generic
and relevant in different contexts, including various users and various types of ges-
tural disciplines. The proposed models should also allow for a practical use, either
for automated supervision, or as a support for teachers, by providing a quantified
and objective feedback to the user.

Fig 1 illustrates the proposed framework. The workflow of this framework includes
six sequential steps. For each one of these steps, an original contribution is presented
in this thesis:

1. First, a large dataset must be collected. To be relevant for gesture evaluation,
the dataset must contain a large number of participants to encode a large vari-
ability of gestures, and a large number of expertise levels. In the present thesis,
a dataset of Taijiquan gestures has been recorded, using 3D and accurate full-
body MoCap. Most gestural disciplines are focused on the motion of a specific
body part, or on a specific purpose such as gesture aesthetics, musical sound
or force production. On the contrary, Taijiquan focuses on the movement it-
self, allowing for the development of general physical abilities such as balance,
coordination, etc., as well as mental skills such as concentration. This general
expertise learned during Taijiquan practice can often be transferred to various
other sports disciplines (Caulier, 2010). These characteristics make Taijiquan a
well-suited discipline to study gesture expertise. The dataset recorded contains
13 classes (Taijiquan gestures), performed by 12 participants of different lev-
els of expertise from novice to expert. All the recordings have been manually
corrected and segmented, resulting in 2200 gestures (≈ 170 / class). The 12
participants have been ranked by three highly experienced Taijiquan teachers,
providing an index of their global level of expertise. This dataset has been
published and is available for free download for research purposes (Tits et al.,
2018a).1 To the author’s knowledge, this is the first published dataset of sports
gestures comprising simultaneously a large number of participants (12), a large
number of different classes (13), and a variety of levels of expertise.

2. Secondly, the data must be processed, in order to ensure the use of high-quality
data for the design of an evaluation model. To that end, an original method is
proposed for automatic and robust recovery of optical MoCap data, based on a
probabilistic averaging of different individual MoCap data recovery models.

3. Thirdly, relevant motion features must be extracted from the data. Motion fea-
tures allow the representation of various aspects of motion, such as dynamics,
semantics, ergonomics or expressivity. In the present context, relevant mo-
tion features are those that are related to expertise. In the present thesis, an

1Taijiquan MoCap dataset: https://github.com/numediart/UMONS-TAICHI

https://github.com/numediart/UMONS-TAICHI
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original high-level representation of motion data is proposed, inspired by the
ergonomic principles of Taijiquan. The ergonomy of a gesture is closely related
to expertise, but this aspect has never been explored in the literature known to
the author. This new type of motion features allows a relevant interpretation of
the motion with a high-level of abstraction, in terms of ergonomics.

4. Fourthly, the features must be processed to provide a more relevant represen-
tation of expertise. In the present work, the morphology influence on motion
is addressed. Morphology is an individual factor that has a great influence on
the motion, but is not related to expertise. For instance, during a kick gesture
the foot of a tall person will generally move higher than the foot of a short
person. On the contrary, if a particular height of the kick is aimed, then the hip
angle of the taller person will be smaller. In both cases, some features of both
individuals will be very different (either foot height, or hip angle), without any
indication about the quality of the performance. In this sense, the information
contained in any feature about morphology can be considered as noise and
should therefore be reduced as much as possible. Moreover, this information
is generally redundant as it is contained in many features. In this respect, a
novel method is proposed for the extraction of motion features independent
of the morphology. The proposed method is based on the modeling of the re-
lation of each feature with a morphological factor. From this model, residues
are extracted, providing a morphology-independent version of the motion fea-
tures. As a consequence, the resulting features are (i) less correlated between
each other, and (ii) enable a more relevant comparison between the gestures of
various individuals, hereby allowing a more relevant modeling of expertise.

5. Fifthly, an evaluation model must be developed from these features, allowing
the prediction of the expertise level on a new gesture performed by a new
user. This step has been widely explored in the present work, and two key
contributions are proposed:

• A simple, efficient and generic evaluation model is presented. It is based
on the computation of basic statistics on motion features (means and stan-
dard deviations), Principal Component Analysis (PCA) and regression. It
is tested with various configurations, including various feature types, dif-
ferent regression models and different gesture classes. Tested on the Taiji-
quan dataset, the proposed model outperforms two methods of the recent
literature. On this dataset, the best prediction accuracy (R = 0.909) was
obtained using a combination of global joint positions and relational fea-
tures (Müller and Röder, 2006), 60 Principal Components (PCs) extracted
on their statistics and L2-regularized linear regression.

• Additionally, a first exploration of the use of deep learning for the eval-
uation of the expertise is proposed. The method is inspired by Laraba
et al. (2017), representing MoCap data as abstract images, allowing their
use with pre-trained deep-learning models for image classification. These
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models are adapted using transfer learning for the regression of the level
of expertise. Though the prediction accuracy is lower than with the pre-
viously presented method (R = 0.518), an analysis of the results suggests
that the model could achieve better performance given a larger dataset,
including a larger number of novices and experts.

6. Sixthly and finally, to allow a practical use of the evaluation model for learn-
ing, a feedback system must provide an intuitive interpretation of the predicted
level, allowing an effective understanding and assimilation by the user of the
system. In the present work, an original and generic feedback system is pro-
posed. The method is based on the synthesis of gestures corresponding to a
given level of expertise, higher than the user’s level. These synthesized ges-
tures are compared with the user’s performance, allowing various types of vi-
sual feedback to the user: (i) a synchronized visualization of both gestures, (ii)
a striped image representing the motion features that need improvement, and
(iii) a striped image displaying the wrongly placed body joints. This feedback
system can be used with any expertise evaluation model as long as it provides
a continuous score. The resulting feedback is intuitive, and can be used either
by a learner for automated supervision, or by a teacher as a tool for objective
supervision.

Thesis overview

Fig 1 illustrates the structure of the present thesis, showing the correspondence with
the proposed framework. This structure is divided into three main parts:

• Part I presents the global background for this research, and is distributed into
three chapters:

– Chapter 1 briefly explores and discusses different definitions of the con-
cept of expertise.

– Chapter 2 presents different types of motion representation (i.e. motion
features). These representations can be divided into low-level features (see
Section 2.2), directly representing motion in terms of positions and orien-
tations, and high-level features (see Section 2.3), allowing the abstract rep-
resentation of various aspects of motion, such as semantics, expressivity
or ergonomics.

– Chapter 3 then outlines the previous works concerning the evaluation of
expert gestures. The various proposed methods are classified into three
categories according to the type of score provided to represent the ex-
pertise: a score can be directly derived from a specific feature designed



6 Introduction

Figure 1: Workflow of the proposed framework, and correspondence with the
manuscript structure.
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to represent a component of expertise (such as coordination, stability, or
complexity indices, see Section 3.4.1) ; a similarity measure can be com-
puted between a learner’s gesture and a model of the ideal gesture (see
Section 3.4.2) ; or a score can be predicted using a classification or a re-
gression model (see Section 3.4.3). Additionally, the few works proposing
methods for feedback are presented in Section 3.4.4.

• Part II presents the proposed contributions of the present thesis concerning the
collection and processing of MoCap data. These processing steps aim at a more
relevant representation of the gesture, containing maximum information about
its expertise level:

– Chapter 4 presents a new dataset of Taijiquan gestures, including 12 par-
ticipants of different levels of expertise, from novice to expert, and 13
classes of Taijiquan techniques. This dataset is used as a benchmark for
the methods proposed in this thesis.2

– Chapter 5 presents and discusses a method for robust and automatic re-
covery of MoCap data, based on soft skeleton constraints and model aver-
aging.3

– Chapter 6 presents a new set of motion features inspired by Taijiquan
ergonomic principles. These features can be divided into stability features
(see Section 6.2), joint alignments (see Section 6.3), favorable angles (see
Section 6.4) and fluidity features (see Section 6.5).

– Chapter 7 presents and discusses an original method for the extraction
of morphology-independent motion features, based on the extraction of
residuals of a regression model predicting a morphological factor from the
original features (Morphology-Independent Residual Feature Extraction,
MIRFE). The method is validated on the Taijiquan MoCap dataset.4

• In Part III, different methods are proposed for the evaluation of expertise, and
for feedback on the learning of an expert gesture:

– Chapter 8 presents a generic evaluation model, based on feature statistics
and classical machine learning. The model is based on PCA and regression
of the expertise level from statistics computed on motion features. The
proposed approach is tested on the Taijiquan MoCap dataset with various
types of motion features presented in the previous chapters (see Section
8.3.1). The use of MIRFE is validated with the proposed method (see
Section 8.3.2). Various regression models are then tested (see Section 8.3.3),
and are compared with methods of the recent literature (see Section 8.3.4).

– In Chapter 9, an exploration of the use of deep learning for gesture evalu-
ation is proposed. To that end, a method proposed by Laraba et al. (2017),

2This chapter is partly reproduced from Tits et al. (2018a).
3This chapter is partly reproduced from Tits et al. (2018b).
4This chapter is partly reproduced from Tits et al. (2017).
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allowing representation of MoCap data as abstract images, is adapted for
the regression of the level of expertise. The method is based on a double
transfer-learning step: a classification model is first trained for different
Taijiquan classes (see Section 9.3.1), and a regression model is then trained
for the prediction of the level of expertise (see Section 9.3.2).

– Finally, Chapter 10 presents an original and generic feedback system based
on the synthesis of a feedback gesture corresponding to a particular level
of expertise. A gesture performed by a user of the system is first evaluated
through an evaluation model. It is then compared with a feedback gesture
corresponding to an improved level of expertise, allowing a highlighting
of the motion features that need improvement for the user to reach a better
level of expertise. The synthesis system is quantitatively validated through
a re-evaluation with the evaluation model (see Section 10.3.1). A qualita-
tive validation is then proposed through various examples of the use of
the system (see Section 10.3.2).

Conclusions are then provided at the end of the manuscript.
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Chapter 1

What is expertise ?

Expertise: “Expertise is special skill or knowledge that is acquired by training, study, or
practice.” (Collins)1

Expert: “having, involving, or displaying special skill or knowledge derived from training
or experience.” (Merriam-Webster)2

Skill: “The ability to do something well; expertise.” (Oxford)3

Though it is not the goal of this thesis to dissert on the definition of expertise, it is
relevant to provide a brief picture of the research conducted on the subject. ’Gestural
expertise’ is a complex concept, involving different physiological and psychological
components. Studies on this subject found in the literature explore very different
aspects of the question, showing the multidisciplinary nature of this research. Ac-
cording to the context or field of research, gestural expertise overlaps with different
keywords: "skilled performance", "motor skills", "motor control", "efficiency", "dex-
terity". An important component of the definition of expertise is that it can only be
acquired through the training of a skill, i.e. through experience.

Expertise is a concept that has already been explored in ancient Chinese philosophy.
A famous excerpt from a traditional text called the Zhuangzi, pillar of the Taoist
philosophy and written more than two thousand years ago, draws the encounter of
a prince with a dexterous butcher (Tzu, 1964):

Cook Ting was cutting up an ox for Lord Wen-hui. As every touch of his hand, every heave
of his shoulder, every move of his feet, every thrust of his knee — zip! zoop! He slithered

1Expertise (Collins), retrieved on 20/07/2018: https://www.collinsdictionary.com/dictionary
/english/expertise

2Expert (Merriam-Webster), retrieved on 20/07/2018: https://www.merriam-
webster.com/dictionary/expert

3Skill (Oxford), retrieved on 20/07/2018: https://en.oxforddictionaries.com/definition/skill

11

https://www.collinsdictionary.com/dictionary/english/expertise
https://www.collinsdictionary.com/dictionary/english/expertise
https://www.merriam-webster.com/dictionary/expert
https://www.merriam-webster.com/dictionary/expert
https://en.oxforddictionaries.com/definition/skill


12 What is expertise ?

the knife along with a zing, and all was in perfect rhythm, as though he were performing the
dance of the Mulberry Grove or keeping time to the Ching-shou music.

“Ah, this is marvelous!” said Lord Wen-hui. “Imagine skill reaching such heights!”

Cook Ting laid down his knife and replied, “What I care about is the Way, which goes beyond
skill. When I first began cutting up oxen, all I could see was the ox itself. After three years
I no longer saw the whole ox. And now — now I go at it by spirit and don’t look with my
eyes. Perception and understanding have come to a stop and spirit moves where it wants. I
go along with the natural makeup, strike in the big hollows, guide the knife through the big
openings, and following things as they are. So I never touch the smallest ligament or tendon,
much less a main joint.

“A good cook changes his knife once a year — because he cuts. A mediocre cook changes his
knife once a month — because he hacks. I’ve had this knife of mine for nineteen years and
I’ve cut up thousands of oxen with it, and yet the blade is as good as though it had just come
from the grindstone. There are spaces between the joints, and the blade of the knife has really
no thickness. If you insert what has no thickness into such spaces, then there’s plenty of room
— more than enough for the blade to play about it. That’s why after nineteen years the blade
of my knife is still as good as when it first came from the grindstone.

“However, whenever I come to a complicated place, I size up the difficulties, tell myself to
watch out and be careful, keep my eyes on what I’m doing, work very slowly, and move the
knife with the greatest subtlety, until — flop! the whole thing comes apart like a clod of earth
crumbling to the ground. I stand there holding the knife and look all around me, completely
satisfied and reluctant to move on, and then I wipe off the knife and put it away.”

“Excellent!” said Lord Wen-hui. “I have heard the words of Cook Ting and learned how to
care for life!”

This excerpt enlightens the idea of a particular knowledge acquired through an ex-
tensive learning process, and through different steps. A common butcher hacks, a
good butcher cuts, and the expert has integrated the whole task and can carve an
ox with eyes closed, and with a specific state of mind acquired through a systematic
training.

From this Chinese philosophy, Taijiquan was developed. Taijiquan is a Chinese mar-
tial art, but it can be considered more broadly as an art of body awareness. It con-
ciliates three components to define gestural expertise: the body external mechanics,
the internal feeling or the mental image, and a spiritual aspect related to concepts of
flow, trance and meditation. These three aspects may be seen as three major steps
during the training for mastering any gestural discipline (Caulier, 2010, 2014, 2015).

In the field of cognitive science, the process of learning an activity and expertise have
been studied (Ericsson and Lehmann, 1996; HAUW, 2009; FLEURANCE, 2009). Ac-
cording to some authors, gestural expertise refers to a mental image of the gesture,
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which then becomes finer and more stable through training (Cadopi, 2005; HAUW,
2009). Others propose that expertise depends mainly on the ability to adapt to cir-
cumstances when performing a gesture. These faculties of adaptation themselves
depend on the training of the gesture in different contexts (King and Yeadon, 2003;
HAUW, 2009).

In more practical terms, psychologists and physiotherapists defined the motor skill,
and divided it down into several concepts. First, they divided it into two main cate-
gories: the gross motor skills and the fine motor skills, according to whether gestures
are global movements of the body, or precise movements involving a specific group
of body muscles. To evaluate the motor skill, practical tests for fine and gross motor
skills were developed. These tests were then divided down into different subtests
to evaluate the various components of the motor skills: precision, integration, man-
ual dexterity, uni- and bilateral coordination, balance, speed, agility, strength (Deitz
et al., 2007; Cools et al., 2009).

In the field of neuroscience, the process of learning has been studied at the brain level,
and allowed the discovery of brain plasticity. This mechanism allows a restructuring
of synapses in the brain through motor training, to optimize the motor control, and
thus to produce more efficient and economic gestures (Kami et al., 1995).

In the context of ergonomics, the quality of a gesture is assessed over the optimiza-
tion of coordinated movements of all the parts of the body in the production of the
gesture, to minimize body stress. This biomechanical optimization leads to energy
savings, but also reduces the risk of injury (Andreoni et al., 2009; Multon and Olivier,
2013; Multon, 2013).

In the context of the arts, and more precisely in dance, Laban Movement Analysis
(LMA), from the name of the choreographer Rudolf Laban, allows the analysis of
the quality of dance motion from an intentional and aesthetic point of view. Laban
defined four main descriptions of motion (Aristidou and Chrysanthou, 2014):

• Body: description of the physical and structural characteristics of the body
(positions and orientations);

• Effort or dynamics: description of the intention and dynamic characteristics of
the motion;

• Form: description of the overall shape of the body and its aesthetic appearance
(volume, height, etc.);

• Space: description of the relationship between motion and the environment.

Regardless of the research domain, whether in cognitive science, physiology or arts,
the description of the quality of a gesture is divided into multiple components, which
are more relevant if used in a complimentary manner.
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For an expert, it is difficult to define what expertise is with words. The expert simply
knows and feels it from experience, just as the Taoist butcher. In this research, the
goal is not a precise definition of expertise. The aim is instead to model from motion
data an expert’s perception of expertise. The concept of expertise is then not de-
scribed with words, but with an algorithm. In this research, we will computationally
represent expertise. To that end, we endorse this aspect of multiplicity and complex-
ity of its definition. In Chapter 2, we present techniques that allow a quantitative
representation of expertise from different aspects (termed as features below), includ-
ing coordination, stability, energy, accuracy, etc., and thus leading to a more robust
description of expertise. In Chapter 3, we then present algorithms used to model the
expert’s perception of expertise from these various features.



Chapter 2

Motion Capture and
Representations
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2.1 Introduction

MoCap appeared together with the development of instantaneous photography and
cinematography at the end of the 19th century, making movement recording possible.
Before the rise of this technology, it was difficult to perceive and measure complex
movements. At that time, Etienne-Jules Marey invented cyclography, the ancestor of
recent optical motion capture methods. According to that technique, a patient mak-
ing a periodic movement, and wearing a black suit with narrow white tapes placed
along each limb of her/his body, is captured with several photographic exposures on

15
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a single plate. This produces overlapping pictures allowing direct representation of
motion on a single image, and accurate analysis thanks to the white tape. Cyclogra-
phy was further developed into kymocyclography by Nikolai Bernstein in 1927, using
electric bulbs as markers instead of tape, and a slowly and evenly moving photo-
graphic film instead of a single plate. The bulbs captured on the photographic film
drew wavelike curves, easy to decipher (Whiting, 1983).

The next step in the development of optical motion capture technology was stereo-
scopic recording of movements, allowing recording of an object with three spatial
coordinates. This was achieved by recording the same scene from different points
of observation. Details on the history of MoCap systems can be found in Whiting
(1983), Kay et al. (2003) and Metcalf et al. (2014).

During the last three decades, different MoCap systems have been developed to al-
low accurate 3D measures. These systems can be divided into two main categories:
intrusive and non-intrusive systems. Intrusive systems use elements fixed on the
object to be captured, like an exoskeleton, inertial measurement units, magnetic sys-
tems, or optical markers. Non-intrusive systems do not need the placement of in-
trusive elements on the target. These systems, based on cameras, have a significant
advantage as they are not intrusive, and hence allow freer target movements. For in-
stance, the Microsoft Kinect1 is a single camera allowing the extraction of a 3D map
from a single 3D depth infrared sensor. OpenStage2 is a multi-camera system, using
shape-from-silhouette construction to extract a visual hull of a body. However, the
accuracy of these markerless systems is still below that of intrusive systems (Brooks
and Czarowicz, 2012; Mundermann et al., 2005). These systems are therefore more
adapted to less demanding applications.

In the present work, we used a state-of-the-art MoCap system using passive optical
markers manufactured by Qualisys 3. This system was chosen for its accuracy (< 1
mm) and capability for recording motion at a fixed frame rate up to 400 fps.

This system allows measuring 3D positions of each marker placed on the body at a
fixed frame rate. In the remaining of this thesis, a MoCap recording will be referred
to as a motion sequence. A motion sequence can be considered as a matrix representing
all the trajectories of all the recorded markers during the entire sequence. This matrix
has the dimension N × (3 · M), where N is the number of frames of the sequence,
and M is the number of recorded markers. A marker trajectory pj (j ∈ 1, ..., M) will
be represented as an N × 3 matrix.

MoCap data can be represented in various manners, with different advantages and
drawbacks. Basic representations (referred to as low-level features below) are directly
derived from recording systems and include various types of positions and orienta-
tions. From these low-level features, higher-level representations may be extracted

1Kinect: http://www.microsoft.com/en-us/kinectforwindows/
2OpenStage: http://www.organicmotion.com/open-stage-2dot4-release/
3Qualisys: www.qualisys.com

http://www.microsoft.com/en-us/kinectforwindows/
http://www.organicmotion.com/open-stage-2dot4-release/
http://www.qualisys.com
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(referred to as high-level features below). These features may represent various specific
aspects of motion such as kinetics, ergonomics, expressiveness and intentions. This
Chapter is not intended to present the vast ensemble of motion features. It is rather
focused on some major types of motion features that were used for the modeling
of expertise in previous works and in the present thesis. Section 2.2 presents dif-
ferent types of low-level features, including positions and orientations (2.2.1), their
representation in global or local coordinate systems (2.2.2), as well as some basic pre-
processing steps for their effective use (2.2.3). Different types of high-level features
are then presented in Section 2.3, including kinematics and kinetics (2.3.2), relational
features (2.3.3), expressive features (2.3.4), mathematical decomposition (2.3.5) and
ergonomic features (2.3.6). A few studies on the influence of individual factors on
these features are then briefly presented in Section 2.4. More specifically, morphology
is an individual factor having a direct influence on motion features, making difficult
the analysis of gestures performed by several individuals. The few works focused
on morphology-independent features will be briefly presented. Finally, a summary
of the presented features is provided in Section 2.5, as well as a discussion on their
advantages and drawbacks.

2.2 Motion low-level representations

2.2.1 Positions and orientations

A motion sequence can be represented using only 3D coordinates (positions). These
positions can be related to markers placed on the body surface. However, it is more
convenient to represent motion using landmarks corresponding to the centers of the
body joints (e.g., shoulders, elbows, wrist, etc.). This representation allows to sim-
ply describe the movement of all body kinematic chains. Fig 2.1 shows an example
of joint representation of the body. From positions of surface markers, a skeleton
is reconstructed (using a biomechanical software such as Visual3DTM4. A few cen-
ters can then be used as landmarks, describing the trajectories of the main kinematic
chains of the body (both legs, both arms, and spine). Nonetheless, this representa-
tion is incomplete, as a limb can also rotate without changing joint positions (e.g.,
pronation/supination of the forearm). It is hence convenient to add orientation in-
formation to the motion sequence representation. This orientation can be expressed
using for instance Euler angles, a rotation matrix or a quaternion, among other rep-
resentations.

Euler angles represent a 3D rotation by three successive rotations around an axis (see
Fig 2.2). It hence requires three parameters (angles y, j and f). A rotation matrix
is a 3× 3 matrix where each column represents each new axis coordinates (Ox’, Oy’
and Oz’ see Fig 2.2) in the original system Oxyz. This representation hence requires

4Visual3DTM: http://www2.c-motion.com/products/visual3d/

http://www2.c-motion.com/products/visual3d/
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Figure 2.1: Joint representation of the body.

Figure 2.2: Rotation using Euler angles (y, j and f). The original system is in black
(Oxyz), the first rotation in blue (y around z), the second rotation in green (j around
u), the third rotation in red (f around z’). The rotated system is Ox’y’z’. (Source:

Wikipedia)

nine parameters. This representation is useful for linear algebra as a rotation can be
performed by a matrix product. It can easily be shown that the parameters of the
rotation matrix can be obtained with the Euler angles.

An advantage of the Euler representation its compactness. However, it suffers from
a major drawback, as the same rotation can be represented with several angles com-
binations, leading to discontinuities in the representation of a motion sequence.

Quaternions, introduced by Hamilton (1866), are a generalization of complex num-
bers, and allow another compact representation of a 3D rotation. A quaternion is
composed of a scalar value, and a 3D imaginary part (i.e. 3 hypercomplex values).
An advantage of quaternions is that they uniquely represent any 3D rotation, with-
out discontinuities. More information on 3D rotation representations can be found
in Tilmanne (2013).
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Figure 2.3: Local coordinate systems in Visual3DTM.

2.2.2 Global and local coordinate system

Positions and orientations are always expressed according to a coordinate system.
By default, all Qualisys data are represented according to a global coordinate system
generally placed on the ground (defined as the origin) with a vertical z-axis. The
position of each marker is thus expressed according to the same coordinate system,
and is called global position. When representing a motion sequence with joints center
positions, it can be relevant to consider a coordinate system located on a parent joint.
An example of joints local coordinate systems is shown in Fig 2.3. For instance,
the position and orientation of the elbow can be defined according to a coordinate
system placed on the shoulder and oriented according to the upper arm. A property
of this representation is that a movement of a joint according to any of its DOF will
not modify the local position of all the children joints. This allows a reduction of the
redundancy of the representation of joint positions.

2.2.3 Modified low-level representation

A major difficulty with dealing with this type of representation, referred to as low-
level features below, is that two similar motions may be represented with highly dif-
ferent features. For instance, two people facing each other and imitating each other’s
motion will have very different global positions. Their local positions will also dif-
fer, at least because of their different sizes. To deal with these issues, it is common
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Figure 2.4: Applauding performance analysis example. Left: motion sequence raw
3D coordinates. Center: both hands raw 3D coordinates. Right: hands Euclidean

distance.

practice to use a rigid transformation (i.e. a translation and a rotation) of the global
coordinate system to align it with specific joints. For instance, the origin (0, 0, 0)
could be placed between both feet, or at the pelvis location. Another common prac-
tice is the scaling of the positions according to people size, in order to reduce the
influence of morphology on the features. The effect of individual factors such as
morphology is further discussed in Section 2.4.

2.3 Motion high-level representations

2.3.1 Introduction

To the human eye, the signal derived from these low-level representations is compli-
cated to interpret. If we imagine a task where a machine should predict if a person is
clapping and at which frequency from this complex signal, it would be challenging.
Instead, we can use prior knowledge and design a higher-level representation of the
movement from this signal. We can extract 3D coordinates of both hands centers, and
compute their Euclidean distance. Fig 2.4 displays this computation on a clapping
motion sequence. Using this higher-level representation, referred to below a high-
level feature, it is easier, even to the human eye, to determine if the person is clapping,
and it is also easier to determine the clapping frequency.

As explained in Chapter 1, motion has been studied in many different research areas.
According to the context, many different aspects of motion may be studied. Different
types of higher-level representations of motion may hence be extracted. For instance,
in dance, LMA is often used to analyze movement. In this frame, motion may be rep-
resented in terms of general body shape or interaction with the scene. For instance,
the bounding box of the body may represent the shape, and the covered area during
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a performance may represent the interaction with the scene. These motion features
are based on specific prior knowledge of the domain. They are used to indirectly
represent the intentions or functions of motion. These higher-level representations
are easier to interpret and make motion analysis easier.

In the following sections, different types of high-level features commonly used in
the literature will be presented, including kinematic and kinetic features (2.3.2), re-
lational features (2.3.3), LMA-based features (2.3.4), mathematic decomposition of
motion (2.3.5) and ergonomic features (2.3.6).

2.3.2 Kinematic and kinetic features

Kinematics and kinetics are two branches of classical mechanics. Kinematics de-
scribes the geometrical aspects of motion, and kinetic is the study of the relations
between the motion and its causes, i.e. mass and the forces applied to it.

Kinematic features such as limbs and joints velocities, accelerations and jerks can
easily be derived from positions and orientations. Kinetic features require an estima-
tion of the body mass distribution. Most of the methods found in the literature to
extract kinetic cues from MoCap are based on inertia parameter tables. Zatsiorsky
(1990) measured relative body segments masses, and center of mass positions on a
sample of college-aged Caucasian males and females, using a gamma-ray scanning
technique. These measurements were then adjusted by De Leva (1996). These mea-
surements allow an estimation of the mass distribution of the body from its size and
total mass.

To compute the body kinetic energy, the body center of mass must be extracted. The
center of mass (CoM) of the body corresponds to the weighted average position of
all the points of this body. A single point at this position with a mass corresponding
to the total mass of the body has the same inertial properties as the entire body.

The CoM of the body can be computed as the weighted sum of the CoM positions
of each body segment:

−−−−−→
CoMbody =

∑N
j=1 Wj ·

−−−→
CoMj

∑N
j=1 Wj

, (2.1)

where N is the number of body segments considered in the sum, Wj is the mass of

the body segment j and
−−−→
CoMj is its center of mass, estimated from inertia parameter

tables (De Leva, 1996).

Finally, the kinetic energy of the body can be expressed as:

E =
1
2

m · ‖−−→vCoM‖2, (2.2)

where m is the total mass of the body, and −−→vCoM is the velocity of the body CoM.
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2.3.3 Relational features - Müller

Motion can be described in terms of kinematic relations between different body
joints, segments of limbs. These features are generally designed based on prior
knowledge of human motion, such as limbs functionality and motion semantic. An
advantage of these features is that they are generally independent of the coordinate
system. The Euclidean distance of both hands is an example of relational feature.
It is not the aim of this Section to present the vast (if not infinite) ensemble of rela-
tional features, which can be intuitively designed by the researcher for any specific
case, such as the stride length or width for walking pattern analysis, or the distance
between hands for “clapping analysis”. However, a general framework based on rela-
tional features to semantically describe the movement of the full body in any context
can be relevant.

In this respect, Müller et al. (2005) proposed a set of 39 binary relational features
describing the relations between different body joints. Originally, this set of fea-
tures was used for motion retrieval, and used with Dynamic Time Warping (DTW,
Vintsyuk, 1968). However, these features were also used for various tasks, such as
classification (Müller and Röder, 2006), segmentation (Müller and Röder, 2008), an-
notation (Müller et al., 2009), and gesture evaluation (Laraba and Tilmanne, 2016).
Fig 2.5 summarizes the features proposed by Müller et al. (2005).

As indicated in this table, these features are based on six different relation types:

• Fangle: the angle between two segments defined by their joints (j1 to j2 and j3 to
j4);

• Ff ast: the normal speed of a joint (j1). Both hands, both feet and the root speeds
are computed;

• Fplane: the distance a joint (j4 in the table) to a plane passing through three joints
(j1, j2 and j3);

• Fnplane: the distance between a joint (j4) and a plane passing through the joint
j3and normal to the segment from j1to j2;

• Fmove: the speed of a joint (j4) in reference to another joint (j3) in the direction
of the segment j1 → j2;

• Fnmove: the speed of a joint (j4) in reference to another joint (j1) in a given
direction (perpendicular to a plane passing through three joints j1, j2 and j3).

For instance, the first feature (of the type Fnmove) computes the forward speed of
the right wrist, i.e. in a direction perpendicular to the torso, defined as a plane
passing through both hips and the neck; feature 7 (Fangle) computes the elbow flexion
angle, and feature 39 (Ff ast) computes the normal speed of the root. From these
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relations, binary features are extracted to semantically describe the movement of the
body. For instance, the first feature indicates if the right wrist is moving forward,
feature 7 indicates if the elbow is bent, and feature 39 indicates if the root is moving
fast. Thresholds for these binary decisions are defined by the parameters θ1 and
θ2 in the table, and used with a Schimtt trigger (Schmitt, 1938). These thresholds
were defined relatively to different parameters of the body morphology (humerus
length, hip width and shoulder width, see Fig 2.5), in order to make them invariant
to morphology.

Baak (2013) proposed a fortieth feature (F40) for computing the angular velocity of
the root orientation. This feature was originally designed to discriminate between
turning and non-turning full-body motions.

2.3.4 Expressive features - Laban

Rudolf Laban is a Hungarian choreographer (15 December 1879 – 1 July 1958). He is
famous for his proposition of a dance notation system known today as Labanotation.
He is also famous for the development of a method for the analysis of movement
qualities, divided in four main categories:

• Body (body): physical and structural body characteristics (movements and ori-
entations)

• Effort or dynamics: description of the intention and dynamic characteristics of
the movement

• Form: description of the overall body shape and its aesthetic appearance (vol-
ume, height, etc.)

• Space: description of the relationship between movement and the environment

From his theory, many researchers developed algorithms extracting these qualities.
Aristidou et al. (2015) proposed a framework based on 27 hand-crafted features for
evaluation of folk dance based on Laban Movement Analysis (LMA). The body com-
ponent was described by eight cues similar to Müller’s relational features described
in Section 2.3.3, such as distances between hands, feet, hips and the head, and
the height of the pelvis. The effort component is mainly represented by kinematic
features including velocities, accelerations and jerks of the root and the body end-
effectors (hands and feet). To describe the intentional effort, they compute the head
orientation in reference to the body movement direction. The shape component is
represented by bounding volumes, as well as the torso height and hands level. These
cues are also similar to Müller’s relational features. Finally, the space component is
described by the distance and the area covered, over a period, by the projection of
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236 11 Relational Features and Adaptive Segmentation

Table 11.1. A feature set consisting of 39 relational features

ID Set Type j1 j2 j3 j4 θ1 θ2 Description

F1/F2 u Fnmove neck rhip lhip rwrist 1.8 hl s−1 1.3 hl s−1 rhand moving
forwards

F3/F4 u Fnplane chest neck neck rwrist 0.2 hl 0 hl rhand above
neck

F5/F6 u Fmove belly chest chest rwrist 1.8 hl s−1 1.3 hl s−1 rhand moving
upwards

F7/F8 u Fangle relbow rshoulder relbow rwrist [0◦, 110◦] [0◦, 120◦] relbow bent

F9 u Fnplane lshoulder rshoulder lwrist rwrist 2.5 sw 2 sw hands far apart,
sideways

F10 u Fmove lwrist rwrist rwrist lwrist 1.4 hl s−1 1.2 hl s−1 hands
approaching
each other

F11/F12 u Fmove rwrist root lwrist root 1.4 hl s−1 1.2 hl s−1 rhand moving
away from root

F13/F14 u Ffast rwrist 2.5 hl s−1 2 hl s−1 rhand fast

F15/F16 ℓ Fplane root lhip ltoes rankle 0.38 hl 0 hl rfoot behind
lleg

F17/F18 ℓ Fnplane (0, 0, 0)⊤ (0, 1, 0)⊤ (0, Ymin, 0)⊤ rankle 1.2 hl 1 hl rfoot raised

F19 ℓ Fnplane lhip rhip lankle rankle 2.1 hw 1.8 hw feet far apart,
sideways

F20/F21 ℓ Fangle rknee rhip rknee rankle [0◦, 110◦] [0◦, 120◦] rknee bent

F22 ℓ Plane Π fixed at lhip, normal rhip→lhip. Test: rankle closer to
Π than lankle?

feet crossed
over

F23 ℓ
Consider velocity v of rankle relative to lankle in rankle→lankle
direction. Test: projection of v onto rhip→lhip line large?

feet moving
towards each
other, sideways

F24 ℓ Same as above, but use lankle→rankle instead of rankle→lankle
direction.

feet moving
apart, sideways

F25/F26 ℓ Ffast rankle 2.5 hl s−1 2hl s−1 rfoot fast

F27/F28 m Fangle neck root rshoulder relbow [25◦, 180◦] [20◦, 180◦] rhumerus
abducted

F29/F30 m Fangle neck root rhip rknee [50◦, 180◦] [45◦, 180◦] rfemur
abducted

F31 m Fplane rankle neck lankle root 0.5 hl 0.35 hl root behind
frontal plane

F32 m Fangle neck root (0, 0, 0)⊤ (0, 1, 0)⊤ [70◦, 110◦] [60◦, 120◦] spine horizontal

F33/F34 m Fnplane (0, 0, 0)⊤ (0,−1, 0)⊤ (0, Ymin, 0)⊤ rwrist -1.2 hl -1.4 hl rhand lowered

F35/F36 m Plane Π through rhip, lhip, neck. Test: rshoulder closer to Π
than lshoulder?

shoulders
rotated right

F37 m Test: Ymin and Ymax close together? Y -extents of
body small

F38 m Project all joints onto XZ-plane. Test: diameter of projected
point set large?

XZ-extents of
body large

F39 m Ffast root 2.3 hl s−1 2hl s−1 root fast

11.2 Adaptive Segmentation

As mentioned earlier, two semantically similar motions may exhibit consider-
able spatial as well as temporal deviations. One key idea is to absorb spatial
variations by transforming a motion data stream D in a posewise fashion
into a sequence F ◦D of binary feature vectors using a suitable feature func-
tion F . In this section, we show how to achieve invariance toward local time
deformations by introducing the concept of adaptive segmentation.

Let F : P → {0, 1}f be a fixed feature function. Then, we say that two
poses P1, P2 ∈ P are F -equivalent if the corresponding feature vectors F (P1)
and F (P2) coincide, i.e., F (P1) = F (P2). Then, an F -run of D is defined to

Figure 2.5: Müller’s relational features. “hl” = humerus length, “hw” = hip width,
“sw” = shoulder width. Reproduced from Müller and Röder (2006).
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the root joint on the ground. Though the proposed features are not original, the in-
terest of this framework arises from the variety of types of features that are proposed
as an ensemble, to describe all aspects of dance motion as described by LMA. This
explains why feature sets derived from LMA have been used for various tasks, in-
cluding computer animation (Chi et al., 2000; Torresani et al., 2007; Zhao and Badler,
2005), motion segmentation (Bouchard and Badler, 2007), retrieval (Kapadia et al.,
2013), indexing (Aristidou and Chrysanthou, 2014), and evaluation (Aristidou et al.,
2015).

2.3.5 Mathematical decomposition of motion

2.3.5.1 Introduction

Instead of using prior knowledge on motion to decompose it into various hand-
crafted features, another approach is the use of mathematical tools allowing extrac-
tion of new representations of data. These tools, widely used in signal processing or
in machine learning, can be applied onto motion data. Though it is not the aim of
this section to review all signal processing and machine learning techniques adapted
to motion data, a few well-known algorithms will be briefly presented, including
frequency decomposition (2.3.5.2) and eigenmovement decomposition (2.3.5.3). Both
of these techniques were used for expertise modeling (Federolf et al., 2012; Zhang
et al., 2010).

More details on the use of other mathematical tools on motion data can be found
in Samadani et al. (2013), where different statistical dimensionality reduction tech-
niques such as supervised Principal Component Analysis, Isomap and functional
Fisher Discriminant Analysis have been tested for motion representation. For the
interested reader, the development of motion manifolds based on machine learning,
and especially deep learning, is also explored in Holden et al. (2015, 2016).

2.3.5.2 Fourier analysis - Frequency decomposition

MoCap data can be considered as a discrete multidimensional signal. During the
last three decades, as research on MoCap was expanding, many signal processing
techniques already extensively used in image and speech processing were applied
to motion. Bruderlin and Williams (1995), in their article simply entitled “Motion
Signal Processing”, showed the interest of multiresolution filtering, a technique ini-
tially used on images, to decompose motion. The intuition was that low frequencies
contained general, gross motion patterns, while high frequencies contained motion
details and subtleties, as well as most of the noise.

Unuma et al. (1995) used Fourier analysis to generate human walking animations
with emotion. Interpolation in the frequency domain allowed them to synthesize
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a smooth transition from walking to running motion, as well as normal walking
to brisk walking motion. These works showed that frequencies efficiently encode
information about motion style and emotion. However, their interest is limited to
periodic motions like walking.

2.3.5.3 Principal Component Analysis - Eigenmovement decomposition

Principal Component Analysis (PCA, Pearson, 1901) is a widespread mathematical
tool, allowing to extract, from correlated observational variables, a new set of orthog-
onal (linearly independent) variables, called principal components (PCs). These PCs
are linear combinations of the original variables, obtained in such a way that the first
PC has the largest possible variance, i.e. following the axis with the largest variability
in the observed data. Each one of the following PCs follows the orthogonal axis with
the largest remaining variance. This technique allows to efficiently reduce the size
of a set of variables, by keeping only the PCs with the largest variance (i.e. the first
PCs).

MoCap data consist of complex and highly multidimensional signals, including 3D
coordinates or orientations of various joints. However, due to the skeleton structure,
all these variables are highly correlated. PCA is thus an efficient technique to reduce
the signal complexity by removing the redundancy of all the variables, and extracting
a few PCs encoding most of the information contained in the signal.

PCA has been first used to decompose gait patterns. Troje (2002) used PCA to decom-
pose gait patterns in PCs, following axes called “eigenpostures”. As these PCs were
similar to sinusoids due to the periodic pattern of walking, he extracted their fre-
quencies and phases, and represented a whole gait pattern using a set of parameters
including first PCs’ frequencies, phases and axes. From a dataset of these parameters
extracted from different participants, he performed a second PCA to extract new PCs
called “eigenwalkers”. He then used this representation for gender classification, and
for walking synthesis.

This technique was then used for various applications, such as person identification
(Troje et al., 2005) or synthesis of expressive gait (Tilmanne and Dutoit, 2010). In the
context of gesture evaluation, Federolf et al. (2012) proposed the use of eigenmove-
ments to quantify skill in sport. They analyzed alpine skiing as an example. They
show that PCs can be visualized as “principal movements” using a back-projection
on the original variables. They show that the visualization of these principal move-
ments allows a semantic interpretation. For instance, in their case, the first principal
movement represented lateral body inclination, the second one represented flexion-
extension of the legs, and the third one represented a rotation of the skis and the
upper torso.

PCA is more general than frequency domain analysis, as it is not limited to the mo-
tion decomposition into periodic patterns. As this technique was more efficient and
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general than frequency analysis, the same idea has then been successfully applied
in many disciplines such as competitive diving (Young and Reinkensmeyer, 2014),
karate (Zago et al., 2016), handball (Helm et al., 2017), soccer (Abdullah et al., 2017),
cross-country skiing (Gløersen et al., 2017), and juggling (Zago et al., 2017).

2.3.6 Ergonomics

2.3.6.1 Introduction

Ergonomic features are related to biomechanical aspects of the movement. They are
based on musculoskeletal modeling of the body, aiming to describe the movement
quality in terms of comfort, robustness, or load. Ergonomics is closely related to skill,
especially in sports disciplines, as it is the study of motor control effectiveness while
minimizing energy expenditure and risks of injury. However, few previous work
known to the author used ergonomic features for evaluation of expertise. Andreoni
et al. (2009) proposed a method based on perceived discomfort (see Section 2.3.6.4)
to automatically assess the ergonomy of a posture from MoCap data, showing a
potential use of ergonomic features in motion quantitative assessment. More recently,
coordination indices were also developed for the evaluation of sports gestures (see
Section 2.3.6.6) (Kim et al., 2011; Alborno et al., 2017; Morel et al., 2016).

In this respect, different types of ergonomic features used in various fields of motion
analysis, such as medical research and animation, are presented in this Section. Some
of these features are used in the present thesis for the development of gesture evalu-
ation models. More particularly, a new set of features has been developed, inspired
by ergonomic features, and especially Taijiquan ergonomic principles (see Chapter
6).

The following Sections will present different ergonomic characteristics of motion,
including balance (2.3.6.2), the degrees of freedom and ranges of motion of the
body (2.3.6.4), postural load or discomfort (2.3.6.4), torques (2.3.6.5) and coordina-
tion (2.3.6.6).

2.3.6.2 Balance

Balance is “the stability produced by even distribution of weight on each side of
the vertical axis” (Merriam-Webster5). Balance is an essential component of motor
control, as it allows to move without losing one’s stability, and in extreme situations,
falling. Balance has been vastly explored, mostly in the area of gait analysis (Bruijn

5Balance definition (Merriam-Webster): https://www.merriam-webster.com/dictionary/balance

https://www.merriam-webster.com/dictionary/balance
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et al., 2013). Nonetheless, balance has been presented in the literature as an expres-
sive feature as well, or for motion indexing (Tilmanne et al., 2015; Kapadia et al.,
2013; Larboulette and Gibet, 2015).

A basic measure of balance is based on the computation of the body CoM (see eq.
2.1), and the support base. The support base is defined as the area between the
points of the body that are in contact with the ground. For instance, the support base
of a standing person is defined by the area between her/his two feet extremities.
Balance can then be derived from the distance between the support base center and
the projection of the CoM on the ground (Tilmanne et al., 2015). A larger distance
means a lower balance.

However, this basic measure does not take into account the velocity and inertia of
the CoM, and the forces implied to keep the CoM above the support base. To assess
balance in dynamical situations, Hof et al. (2005) proposed the extrapolated center
of mass (XCoM), based on an extension of this model. This extension is inspired by
an inverted pendulum system, adding a linear function of the CoM velocity to its
position in evaluating its distance with the support base center:

XCoM = CoM +
VCoM

ω0
, (2.3)

where VCoM is the velocity of the CoM and ω0 is the eigenfrequency of the inverted
pendulum:

ω0 =

√
g
l

, (2.4)

where g is the grativational acceleration and l is the length of the inverted pendu-
lum equivalent to the body. However this model considers the body as a simple
pendulum (i.e. a rope and a mass), and not as a kinematic chain.

To take into account the forces implied in keeping the CoM above the support base,
Duclos et al. (2009) proposed a method for quantifying the force needed to keep
the CoM above the support base (called the stabilizing force), and the destabilizing
force moving the CoM outside the support base. However, this method requires a
measurement of ground reactions forces (using for instance a force plate).

2.3.6.3 Degrees of freedom and ranges of motion

A degree of freedom (DOF) is any independent part of the body motion, i.e. the
rotation of a joint. The range of motion (ROM) defines the maximal rotation that
can be applied along each DOF. For example, the ROM of the DOF corresponding
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Neck Shoulder Elbow Wrist
X+ Flexion Flexion Flexion Flexion
X- Extension Extension - Extension
Y+ Left bending Adduction - Radial deviation
Y- Right bending Abduction - Ulnar deviation
Z+ Left rotation Medial rotation Supination -
Z- Right rotation Lateral rotation Pronation -

Spine Hip Knee Ankle
X+ Flexion Flexion Flexion Flexion
X- Extension Extension - Extension
Y+ Left bending Adduction - Adduction
Y- Right bending Abduction - Abduction
Z+ Left rotation Internal rotation - -
Z- Right rotation External rotation - -

Table 2.1: List of typical measured ROM.

to the flexion of an elbow usually varies from 140 to 159◦ according to individuals
(NASA, 1995).

ROM are generally used in ergonomics to evaluate suppleness or disability (Boone
and Azen, 1979). In motion processing, ROM can also be used as reference to nor-
malize joint motions, to represent movement as a portion of the total possible motion
of a joint.

ROM are usually expressed as Euler angle deviations from a reference position, cor-
responding to a rest posture (standing, lying or sitting posture). In this manner, at
most six ROM are given for each joint, i.e. one for each rotation axis (x, y, z) on each
way (positive, negative). For instance, the shoulder is the most mobile body joint and
is defined by six ROM: flexion and extension, adduction and abduction, medial rota-
tion and lateral rotation. On the opposite, the knee has only one degree of freedom,
on one way only, the flexion, and the other five ROM are considered as zero. Table
2.1 lists different measurable ROM of each joint, as proposed in Kee and Karwowski
(2003). The axes and signs are arbitrarily chosen in this example.

Normal values for these ROM can be found in Boone and Azen (1979), or in the
NASA man-systems integration standards (NASA, 1995)6, among other sources.

Movement representation through DOF and ROM has the advantage to be anatomi-
cally meaningful, as each component corresponds to a degree of freedom of the body.
Motion normalization may have an interest when computing relationships between
joints in a movement, or comparing motions of various individuals. However, a lim-
itation is due to the fact that joint ROM are not strictly independent variables. The
maximal orientation (the ROM) on a DOF can indeed depend on the orientation on

6NASA standards : http://msis.jsc.nasa.gov/sections/section03.htm

http://msis.jsc.nasa.gov/sections/section03.htm
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another DOF. Haering et al. (2014) showed these interactions between DOF for the
particular case of the shoulder, and proposed a representation method based on a 3D
hull to account for these interactions.

2.3.6.4 Postural load (perceived discomfort)

The postural load, or perceived discomfort, or stress, of a joint is an indication of
the perceived stressfulness of a joint, according to its orientation, taking into account
each degree of freedom of the joint. The postural load of the whole body provides
information about the comfort of a posture, and on the risk of injury.

The evaluation of the postural load has mainly applications in industrial ergonomics,
to correct workers postures, or to design ergonomic workplaces. However, it can also
find an interest in movement performance assessment, by evaluating if the movement
is optimized in terms of stress, i.e. minimizing the pain, and risks of injury.

The joint stress can be defined as the sum of the perceived discomforts associated
to the independent movement of a joint on each degree of freedom. The perceived
discomfort on a degree of freedom can be interpolated from a table of perceived dis-
comforts indices in relation with joint angles. Such tables can be found in ergonomics
literature (Kee and Karwowski, 2001, 2003; Andreoni et al., 2009). The overall pos-
tural load can then be deduced from the joint stresses. Kee and Karwowski (2001)
defined a postural load index as the sum of all perceived discomforts for each joint:

Sj =
mj

∑
i=1

Sij

Postural load =
n

∑
j=1

Sj

(2.5)

where Sj is the stress of the joint j, Sij the part of the stress independently associated
to the degree of freedom i for the joint j, and mj the number of degrees of freedom
of the joint j.

Andreoni et al. (2009) proposed a method based on a weighted sum of each joint
stress, to evaluate the overall postural load. The weights (Wj) of each joint are propor-
tional to the mass of the distal body district corresponding to each joint (as measured
by Zatsiorsky, 1990):

Postural load =
n

∑
j=1

WjSj (2.6)
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They tested experimentally their method on a reaching task. During the experi-
ment, participants were recorded with a MoCap system while reaching, with one
hand, different points regularly placed from the ground to the top of an experimen-
tal structure (see Figure 2.6). From the MoCap data, they calculated the postural load
for the reaching movement of each point on the structure, and compared the results
of their method to the previous method from Kee and Karwowski (2001).

Figure 2.6: Postural load on a reaching task. Reproduced from Andreoni et al. (2009).

The postural load is a feature specifically developed for ergonomics research. Nonethe-
less, an interest can be found in the assessment of sport or dance performance. In
sport, an efficient gesture will minimize the global stress for the same outcome, while
distributing the load on each joint according to their robustness. In dance, on the
other hand, the global stress may be high, displaying the emotion and intention of
the dancer through her/his movements.

The postural load presents several limitations. First, as its name suggests, the feature
is based on the posture only, and does not account for the movement dynamic. More-
over, the perceived discomfort tables found in the literature rarely take the gravity
into consideration, nor the coupling between ROM and joints.

2.3.6.5 Torques

Torques represent the forces that are responsible for joint rotations. They allow the
definition of the dynamic state of each body joint.

Though they could be classified as kinetic features, torques have direct applications
in ergonomics, to evaluate muscles exertions and articular loads. They are also used
in computer animation, to evaluate the naturalness of a motion (Multon, 2013).
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Joint torques cannot be directly measured, but they can be calculated through dif-
ferent “inverse dynamics” methods. One approach is to consider the body as a me-
chanical system limited to rigid isolated segments (Si). For the center of mass of each
segment, the resultant force and variation of angular momentum can be expressed as
follows, considering external forces and torques (Fi

e , Ti
e) such as gravity and ground

reaction, and internal forces and torques (Fi
m, Ti

m), due to muscle activity :

miγi = Fi
e + Fi

m

dLi

dt
= MFi

e
+ MFi

m
+ Ti

e + Ti
m

(2.7)

where mi, γi and Li are the mass, acceleration, and angular momentum of the center
of mass of the segment Si , respectively. As connected segments apply forces and
torques on each other, the problem is resolved iteratively, from an extremity of the
body to another. Details can be found in Multon (2013).

Joint torques have the advantage of being more objective features than the perceived
postural load, as they only depend on physical equations, and not on the subject’s
feelings. They allow for a precise ergonomic assessment of gestures and postures,
and are therefore widely used in the evaluation of the ergonomics of user interfaces
Bachynskyi et al. (2015).

However, dynamic motion models generally depend on weight approximations for
each body segment, which can vary a lot from a person to another. Moreover, noisy
motion data can result in a very inaccurate computation of accelerations. Finally,
a specific instrument such as a force plate is needed to efficiently estimate ground
reaction forces.

2.3.6.6 Coordination

Coordination is “the harmonious functioning of parts for effective results” (Merriam-
Webster7). Coordination is the process of synchronizing joints and limbs movements
to efficiently perform a gesture. Coordination has been studied in various fields,
such as gait analysis (Dejnabadi et al., 2008), music (Furuya et al., 2011, 2015), and
sports (Kim et al., 2011; Alborno et al., 2017; Morel et al., 2016).

To assess the inter-joint coordination of a leg in a Taekwondo kick, Kim et al. (2011)
proposed an index based on local joints angular velocities:

I IC = (−→ωH/
∥∥−→ωH

∥∥) · (−→ωK/
∥∥−→ωK

∥∥), (2.8)

7Coordination definition (Merriam-Webster): https://www.merriam-
webster.com/dictionary/coordination

https://www.merriam-webster.com/dictionary/coordination
https://www.merriam-webster.com/dictionary/coordination
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where −→ωH and −→ωK are respectively the hip and knee 3D angular velocities. If these
vectors are in the same direction, the inter-joint coordination (I IC) is 1. I IC = −1 if
they are in an opposite direction.

To evaluate limb synchronization in karate, Alborno et al. (2017) extracted limbs
acceleration peaks using progressive filtering. They then analyzed time delay rela-
tionships between the peaks of each limb.

Dejnabadi et al. (2008) proposed a method based on a neural network to model walk-
ing coordination at different stride lengths and walking speeds. The neural network
was designed to reconstruct a normal walking pattern from two input parameters:
stride length and cadence. To evaluate the coordination of a walking motion, they
compared it to a reconstructed walking pattern at the same stride length and speed,
and they computed a coordination index from joint angles differences.

Morel et al. (2016) proposed a method based on Dynamic Time Warping (DTW)
for evaluation of limb synchronization during a sports gesture. From a dataset of
gestures performed by experts and aligned with DTW, they compute an average ges-
ture, supposed as a perfectly synchronized gesture. For a new gesture, they perform
a temporal alignment of each limb’s data separately (called local alignment). They
then evaluate the gesture synchronization from the delay between two limbs align-
ments.

PCA (see Section 2.3.5.3) can be seen as a tool for coordination analysis, where each
eigenmovement can be seen as a coordinated part of movement (Daffertshofer et al.,
2004).

2.4 Multifactor influence

In a dataset of any type of motion performance, a large number of factors can influ-
ence the way a performer moves. Factors are the variables, intra- or inter-individual,
which can have an effect on motion. Inter-individual factors may be of various types,
including social factors (e.g., culture, education), psychological factors (e.g., person-
ality, emotions, state of concentration), physiological factors (e.g., gender, age, mor-
phology, force, suppleness), or psycho-physiological factors (e.g., handedness, motor
skills). On the other hand, intra-individual factors are related to the performance,
independently of the performer, such as the type of dance, or the purpose of a partic-
ular exercise. Many specific research on these factors has been conducted in different
contexts, such as clinical factor analysis on gait patterns (Lord et al., 2012; Verlinden
et al., 2013), or investigation of emotion factors effects on body action and posture
(Dael et al., 2012), and on kinematics of locomotion (Barliya et al., 2013), to mention
a few. All these factors may have different effects on motion features, effects which
are generally difficult to analyze separately.
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Morphology is a particular factor that has a direct influence on motion, making com-
parisons between gestures of different individuals difficult. To alleviate this issue,
different motion data representations have been proposed. Sie et al. (2014) proposed
a simple skeleton scaling method, by placing the coordinate system on a reference
node of the body (i.e. on the pelvis), and dividing all nodes coordinates by the torso
height. Features can then be extracted on these scaled data. This method was later
used by Morel et al. (2016) for evaluation of tennis serve. It has the advantage to
be very simple, but has many limitations. It is based on the simplistic hypothesis
that the motion of a short individual should be an homothety of those of a tall in-
dividual. However, weight, height of the center of mass, shoulder width, and hip
width, among others, may also influence motion in different ways, including inertia,
balance, speed and power. These characteristics will be altered by this basic scaling.

Kulpa et al. (2005) developed a morphology-invariant representation of motion, origi-
nally developed for animation, where they defined limbs with variable lengths. Each
limb (legs and arms) is defined by the position of its end-effector, and by a plane
where the middle joint (knee and elbow) is located. The spine is represented as a
spline. This representation allows reconstruction of the motion to fit specific con-
straints. However, it does not fully store the actual motion, and it modifies it to fit
these constraints. It is relevant for animation and motion retrieval, but is not suited
for motion analysis, which can require motion details that are lost in this representa-
tion.

Müller et al. (2005) proposed a specific feature set based on 40 logical relational fea-
tures, as described in Section 2.3.3. The boundaries for the logical decision were
defined by different body segment lengths such as the humerus length or the shoul-
der width, so that each feature is scaled by a custom pre-defined body characteristic.
However, the method is limited to the specific proposed feature set, and does not
allow extraction of other high-level features.

In Chapter 7, we propose a novel method for removal of the influence of any quan-
tifiable factor on any motion feature. This method has been published in Tits et al.
(2017).

2.5 Discussion and conclusion

In this Chapter, we presented various motion representations, classified into two
main categories:

• low-level features, including positions and orientations, both in global or local
coordinate systems;

• and high-level features, including kinematic, kinetic, relational, expressive, er-
gonomic and decomposition features, among others.
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Among these categories, a continuous scale could have been used. First, kinematic
and kinetic features are close to low-level features, as they are directly derived from
basic mechanics, without using any a priori knowledge on human motion. Secondly,
relational features and eigenmovements aim at a functional description of human
motion. Nonetheless, this representation is closer to a direct description of motion
than higher-level representations like Laban or coordination features. The latter are
indeed based on prior knowledge of human motion, and respectively intend for a
description of the motion quality in terms of expressiveness or ergonomics. On this
continuous scale, relational features and eigenmovements could be seen as mid-level
features, and expressive or some ergonomic features as higher-level features.

High-level representations have the assumed advantage to be easier to interpret than
low-level ones, and may be more representative of motion for the analysis of the
intention, expressiveness, or expertise in the particular case of ergonomic features.

The drawback of this type of representation is that it does not ensure a full de-
scription of the motion. On the opposite, a low-level feature set including all joint
positions and orientations intrinsically ensures a full representation of motion (lim-
ited to the data recorded by the MoCap system). High-level features are inevitably
extracted from low-level features. Therefore, they do not add new information about
motion, but rather make it easier to interpret. Consequently, representing motion
using a high-level feature set may lead to a loss of information if all low-level fea-
tures cannot be retrieved from them. For instance, Müller features indicate if hands
are far apart sideways (F9 in Fig 2.5), but the information of the absolute positions of
both hands is lost in this representation. This representation is sufficient in the case
of clapping detection, and is more relevant than hand positions as a single feature is
needed, compared to the six 3D coordinates of both hands. However hand positions
would be needed to analyze specific characteristics of the clapping gesture such as
its ergonomy, or to discriminate between a flamenco clapping (with both hands on
the same side of the body), or basic clapping with hands in front of the body. On
the other side, higher-level features like postural loads and torques would ease the
analysis of the ergonomy of the gesture, but do not allow the detection of a clapping
motion, nor the extraction of other specific characteristics such as the clapping fre-
quency. Low-level representations such as joint positions allow analysis of all these
characteristics, although it would require a more complex modeling of the relations
between the joint positions and the analyzed characteristics.

In the present thesis, different types of features, including both low-level and high-
level features, are tested for the development of gesture evaluation and feedback
models (see Part III). In particular, a new feature set inspired by Taijiquan ergonomic
principles is presented in Chapter 6.

Finally, all these features may be influenced by various factors, and especially mor-
phology, making difficult comparison between motions of different individuals. Vari-
ous previous works proposed an adapted data representation to reduce morphology
influence (see Section 2.4), and a novel and more general method is proposed in
Chapter 7.
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Chapter 3

Expert gesture evaluation: a state of
the art
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3.1 Introduction

The ability of a computer to interpret human gestures, and particularly to evaluate
the quality of an expert gesture, mainly depends on two major technologies that are
MoCap and machine learning. MoCap technologies allow the automatic and accu-
rate recording of human motion in 3D. On the other hand, machine learning is a
branch of artificial intelligence concerned about the development of mathematical
models for the automatic prediction of a variable (such as expertise) from other re-
lated variables (such as gestures). In order to understand better the context of the
present research, a short history about the developments in both domains is pro-
vided. Section 3.2 presents a history of the use of machine learning algorithms for
the analysis of human activity. Section 3.3 then provides a history of the development
of 3D full-body MoCap technologies, and their use for human motion analysis, with
or without machine learning. Section 3.4 then presents the state of the art concerning
expert gesture evaluation.
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3.2 Machine learning for human activity analysis

During the last decades, a vast number of new technologies has emerged, driven
by electronics, mathematics and computer science. One of the most important tech-
nologies developed in contemporary computer science is machine learning. More
specifically, applied to human activity analysis, machine learning allows a computer
to decipher and interpret a human’s state or actions.

Machine learning techniques are algorithms that can be applied on any type of data,
allowing a computer to automatically learn a mathematical model from these data.
These algorithms are usually used to automatically predict a dependent variable (the
outcome) from various input variables (the predictors). The outcome can be a category,
such as a word or a person’s gender, or a continuous variable, such as age, or the scale
of an emotion. The predictors are for instance pixels of an image, an audio signal,
bio-signals, or various types of features extracted from them using signal processing
techniques. The modeling procedure is generally based on the probability theory,
or on the optimization of a mathematical function representing the relation between
the predictors and the outcome (Dietterich, 2002; Kotsiantis et al., 2007; LeCun et al.,
2015).

In the particular field of human activity analysis, these techniques have been vastly
explored allowing machines to recognize, synthesize and characterize various types
of human actions measured with different sensing and computer vision systems.
From audio data, speech recognition (Rabiner and Juang, 1993) and synthesis (Du-
toit, 1997) have been extensively studied during the late 20th century, and used in
many applications including GPS guiding, text-to-speech, speech-to-text, and more
recently virtual assistants. From face images and videos, machine learning tech-
niques allow face recognition (Zhao et al., 2003), synthesis (Blanz and Vetter, 1999),
and facial expression recognition (Cohen et al., 2003). More broadly, images have also
been used for many tasks such as pose recognition (Bradski and Davis, 2002), sign-
language recognition (Starner et al., 1998) and handwriting recognition (Plamondon
and Srihari, 2000). Moreover, text data allow semantic analysis and text generation
(Sebastiani, 2002). Most of these types of signals are now being used with the latest
state-of-the-art machine learning algorithms, i.e. deep learning (LeCun et al., 2015).
A fundamental aspect of machine learning, and especially deep learning, is that mod-
els can learn extremely complex relations between variables, if a large dataset and
enough computational resources are provided.

Finally, another major but still emerging branch of human activity analysis is the
analysis of human motion. Unlike speech which is recorded from a single micro-
phone, or faces which are recorded from a single 2D camera, full-body articulated
motion is a complex signal, difficult to record with sensors. In the early 2000s, most
of the studies on human motion analysis are therefore limited by the type of motion
representation, generally based on 2D silhouettes extracted from a single camera
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Figure 3.1: The instrumented glove (Dipietro et al., 2003) and a surgery teleoperation
system (BBZ Console) are both electronics devices allowing the recording of specific

3D motions.

(Poppe, 2010). Only hand gesture recognition was already explored using specific
MoCap sensors such as an instrumented glove (see Fig 3.1, left image) (LaViola,
1999). Other very specific domains have also been explored, such as evaluation of
teleoperation and minimally-invasive-surgery gestures, thanks to the specific elec-
tronic devices required in these disciplines (see Fig 3.1, right image) (Hannaford and
Lee, 1991; Rosen et al., 2001). However, in this case, the study is limited to the motion
of the manipulated tools rather than body motion itself.

3.3 3D full-body motion capture

MoCap is the process of recording the positions and/or orientations of any object or
body part, through any type of sensor (see examples Fig 3.2). Though the concept
appeared by the end of the 19th century through cyclography (Marey, 1873), the first
commercial manufacturers of full-body MoCap systems appeared about a century
later, such as Polhemus (1969), Motion-Analysis (1982), and VICON (1984). At the
same period, their systems began to be used for clinical research (Taylor et al., 1982)
and for character animation in video games and movies (Sturman, 1994). However,
before the end of the 1990s, the use of MoCap systems was generally limited to 2D
unstable recordings, requiring a time-consuming data post-treatment to revise and
label all the recorded positions. The development of accurate 3D and automatic
MoCap systems (Herda et al., 2000; Kakadiaris and Metaxas, 2000) allowed their
effective use for wider applications. As commercial MoCap systems integrated these
developments, the first 3D full-body MoCap datasets were recorded and published
on the web to promote research development in the domain (CMU, 2003; Ma et al.,
2006; Müller et al., 2007). The high cost of these measurement systems1 may also

1The cost of a state-of-the-art 3D MoCap system (accuracy < 25 mm, frame rate > 100 fps) is
generally higher than 10.000$ still today (Romero et al., 2017).
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Figure 3.2: State-of-the-art magnetic and optical MoCap systems. Left: Qualisys
(optical). Right: Polhemus (electromagnetic).

partly explain the delay of the research on human motion analysis compared with
other domains, where a low-cost microphone or camera is sufficient to record a large
dataset or real-time data. Nevertheless, although such systems are still rarely used
in research because of their price, low-cost devices such as inertial sensors and depth
cameras allowed a first insight of the potential of motion analysis.

The recent spreading of MoCap systems is illustrated in two specific and recently
very active research areas (see Fig 3.3 ): Lalys and Jannin (2014) proposed a sys-
tematic review of surgical process modeling, showing the growing interest on the
subject from 2007. Note that most of the studies were still based on observation,
surgical robot data measurements and video recordings, and that only 15% of the
studies actually used MoCap devices. In a different context, Camomilla et al. (2018)
presented a thorough systematic review of the use of inexpensive wearable MoCap
devices (inertial sensors) for sports performance analysis, expanding from 2009 as
illustrated in Fig 3.3. Most of these studies are still based on the use of a few sensors,
placed either on the body or on an object (e.g. a racket or a golf club). Among the 286
publications selected in this review, 19 were based on machine learning, generally for
activity detection, recognition and evaluation.

During the last few years, the use of high-quality 3D full-body MoCap systems has
been expanding, especially with multi-camera optical MoCap systems (e.g., QualisysTM,
see Fig 3.2, left image) and electromagnetic systems (e.g., PolhemusTM, see Fig 3.2,
right image).

These technologies have then been used in biomechanics (Olesh et al., 2014), in ani-
mation (such as Happy Feet and Avatar movies (Fischer, 2018) ), as well as in music
(Jensenius and Wanderley, 2010), dance (Aristidou et al., 2015) and sports analysis
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Figure 3.3: Evolution of the research on (left) surgical process modeling and (right)
sports analysis with wearable sensors. The results are respectively reproduced from

Lalys and Jannin (2014) and Camomilla et al. (2018).

(Federolf et al., 2012). More particularly, machine learning algorithms have been
progressively tested on motion data, allowing computational interpretation of hu-
man motion, such as expressivity (Tilmanne and Dutoit, 2010; Dael et al., 2012),
coordination (Daffertshofer et al., 2004; Dejnabadi et al., 2008), style (Aristidou and
Chrysanthou, 2014) and skill (Federolf et al., 2012).

3.4 Expert gesture evaluation

The development of machine learning and MoCap technologies has unleashed re-
search possibilities in many areas. One of the outstanding challenges is the analysis,
and more particularly the evaluation of skill in an expert gesture. Gesture evaluation
is essential in many disciplines, and has already been explored in different areas,
including sports (Federolf et al., 2012), music (Tits et al., 2015), dance (Laraba and
Tilmanne, 2016), rehabilitation (Pham et al., 2016), driving (Zhang et al., 2010) and
even surgery (Megali et al., 2006). Regardless of the discipline, the typical approach
to evaluating a gesture can be divided in four main steps:

• First, motion data must be captured. A dataset is recorded, generally includ-
ing several individuals with different skill levels, for instance professionals or
teachers and learners.

• Secondly, from these raw motion data, relevant features can be extracted. These
features aim to represent motion in an efficient way regarding the targeted
task. They can be derived for instance from body kinematics, kinetics, or mo-
tion decomposition. They can also represent relations based on prior domain-
knowledge and semantic interpretation, such as expressivity, biomechanics, er-
gonomics or functionality (see Chapters 2 and 6).
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• Thirdly, features can be analyzed, allowing selection or extraction of the best
feature set for the targeted task. A common technique for multi-factor depen-
dent data such as a MoCap data is factor analysis (Tits et al., 2016). The goal
of this step is to reduce the global amount of information contained in the data
to keep the most relevant and reliable information regarding the targeted task.
For instance, this step enables to discard unwanted bias, such as morphology,
age or expression, while keeping features more dependent on the targeted fac-
tor, i.e. skill in the present context. Features can also be post-processed, in
order to extract a more relevant representation of motion. Dimensionality re-
duction techniques such as PCA can be used to extract a smaller set of relevant
features. Morhology-independent features may also be extracted (see Section
2.4 and Chapter 7).

• Finally, the selected features, either low-level or high-level, are used to develop
a model for the evaluation of the skill of a gesture. To validate an evaluation
method, the results are generally compared to annotations provided by one or
more expert of the discipline. These annotations may be either scores (for in-
stance on a scale 0-10), classes (beginner, intermediate, expert), or a ranking of
the participants. For specific sports, these scores can be derived from objective
measures, such as a timing in a race, the speed or the accuracy of a shot, the
number of balls a juggler can manage, etc. If none of these variables are avail-
able, the number of years and intensity of practice in a discipline can also be
used to estimate the level of expertise.

Three major types of computational evaluation models can be found in the literature,
and are presented in the following sections:

• Extract an unsupervised score directly from the features, i.e. without any use
of annotations in the design of the model (see Section 3.4.1)

• Compute a similarity measure from a model of the ideal gesture (see Section
3.4.2)

• Predict a score using a regression or classification model (see Section 3.4.3)

A main interest of gesture evaluation is the ability to provide feedback on a perfor-
mance. However, most of the previous works focus on the evaluation process,and do
not explicitly show how to use evaluation results to provide feedback to a user. The
few works proposing solutions for feedback on a gestural performance are presented
in Section 3.4.4.

3.4.1 Direct (unsupervised) score

A score can be directly derived from the features and provide a quality index for
the gesture. This score can actually be considered as an even higher-level feature. It
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can then be compared to the annotations, taken as reference, using statistical tests,
or a correlation index. Another validation is to evaluate a subject before and after
a training period, with the hypothesis that the subject has progressed during this
period.

Leroy et al. (2008) analyzed the influence of expertise on postural organization dur-
ing juggling. On a dataset including two groups of juggles (five experts and five
intermediate jugglers), they extracted specific high-level features, including elbow
flexion/extension latency and maximal lateral oscillation of the pelvis. Using sta-
tistical tests, they showed significant differences in some of these features, allowing
them to conclude that expertise influences the posture during juggling.

In a preliminary study, piano gestures were analyzed using PCA (Tits et al., 2015).
PCs and eigenvalues were extracted separately for each motion sequences performed
by each piano player. Then, from the eigenvalues, the cumulative variance of PCs
were computed, and the number of PCs required to capture 95% of the total variance
of the data were calculated. Finally, these numbers were compared to the experience
of the pianists and showed that experienced pianists tend to use more PCs, reflecting
a higher complexity of their movements.

Dadashi et al. (2015) analyzed front-crawl performances from nine professional and
nine recreational swimmers. From accelerometers placed on both wrists and on the
lower-back, they extracted specific features, including durations of arms pulling and
pushing phases, time differences between both arms phases (representing their co-
ordination), the stroke rate, length and velocity. They then computed the Cauchy
Index for these variables, reflecting the differences of these features for two complete
laps (50 m). This index represents the variability of the swimming patterns across
different laps for a swimmer. Using an analysis of variance (ANOVA), they showed a
significant difference of the Cauchy Index between the professional and recreational
swimmers, indicating that professional swimmers have more stable swimming pat-
terns.

Gløersen et al. (2017) analyzed motion of professional skiers using PCA as well
as COM movement features. From the PCs extracted from a matrix containing all
motion sequences (also called Principal Movements (PMs)), they computed specific
features such as peak-to-peak differences, timing differences between stride cycles
and stride cycle symmetry. They then compared all these features to the skiers’
rankings in the International Ski Federation (FIS points), using Pearson’s correlation.
They showed high relations between FIS points and some of these features, including
R = 0.92 (CI = [0.45, 0.99]) for COM lateral movement amplitude, and R = −0.87
(CI = [−0.21,−0.99]) for the periodicity of the fourth principal movement, account-
ing for an asymmetric movement of the legs in the sagittal and coronal planes.

Zago et al. (2017) also used PCA to analyze motions of street jugglers juggling 3, 4
or 5 balls. From the PMs, they computed autocorrelations and relative amplitudes.



44 Expert gesture evaluation: a state of the art

Then, a second PCA was performed separately for each motion sequence of each
participant. From these PCs, they extracted specific features, including variances of
the first four PCs, and the residual variance (i.e. the sum of the variances of all
the other PCs). For all these features, they used Mann-Whitney tests and showed
significant differences between two groups, defined as the expert group (including
participants able to juggle 6 or more balls), and the intermediate group (able to juggle
5 balls).

Alborno et al. (2017) proposed a score for evaluation of the synchronization of karate
motions. To that end, they extracted limbs CoM acceleration peaks using progressive
filtering, and analyzed time delay relationships between the peaks of each limb. They
derived an average degree of synchronization from the mean of these delays. To
validate their score, they conducted statistical tests on two populations of karateka (a
high-skilled population and a low-skilled one), and showed a significant difference
between their synchronization scores for both arms and legs motions.

3.4.2 Similarity measure

A model of an ideal gesture can be derived from a part of the dataset, containing
only gestures performed by experts of the discipline. A similarity measure can then
be obtained by comparing a gesture to this model. This similarity measure can be
considered as a score or a higher-level feature and be validated in the same way.

Bianco and Tisato (2013) used Dynamic Time Warping (DTW, Vintsyuk 1968) to eval-
uate karate techniques. DTW is an algorithm allowing the warping of a time series
to align it temporally with another one (called the reference). It finds the optimal
warping of frame indices of the time series to minimize its distance with the ref-
erence. From the 3D coordinates of 15 joints recorded with a Microsoft Kinect V1,
they extracted a set of 14 angles between joints triplets. They then aligned this 14-
dimensional time series to a reference one (performed by an expert), using DTW.
They extracted a score on a [0, 10] range, using a logistic function of the distance
between the aligned time series and the reference one.

Aristidou et al. (2015) developed a similarity measure based on Laban features. From
a set of 27 temporal features, they extracted statistics on a sliding window, including
maximum, minimum, mean and standard deviation. For each window, they simply
calculated the correlation between a novice trial and a reference one performed by
a teacher. They iterated the same process either separately for each category of
Laban features (body, effort, shape and space, see Section 2.3.4), or for the entire
set of features. As a demonstration, they integrated their method in a dance learning
platform, but did not propose any quantitative validation.

Pham et al. (2016) proposed a summative scoring system based on a trajectory double
integral to define the spatial distance between two trajectories. They tested their score
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in a sign word recognition task, on the public dataset Australian Sign Language
(Kadous et al., 1995). Then, to validate their score as an evaluation method, they
computed a score for a novice signer at different periods, and verified that there was
a progression after several attempts for the same sign word.

Chen et al. (2016) used a k-Nearest Neighbors classification model to recognize three
types of Timpani percussive gestures (legato, accent and vertical accent) . The clas-
sification model was trained on a teacher’s motion, using arms and stick kinematic
features. The classification rates for each participant were then used as a similarity
measure to the professional percussionist’s motions. As a validation, participants
ranking obtained from their respective classification rates were compared to a rank-
ing annotated by the teacher. For the six participants, the first two were correctly
ranked, as well as the last one, while the three others obtained very close scores both
in annotations and in classification rates, showing the possible effectiveness of the
method.

Laraba and Tilmanne (2016) used a similar approach to evaluate Walloon dance mo-
tions recorded with a Microsoft Kinect V2 and Qualisys. They trained a Hidden
Markov Model (HMM, Baum and Petrie 1966) with the data of an expert recorded
with a Qualisys system (high-quality data), to classify three different basic steps. The
input variables of the HMM were seven relational features inspired by Müller et al.
(2005), and 36 distances between pairs of leg joints. They then adapted the HMM
using maximal likelihood linear regression (Laraba et al., 2015) so that it can recog-
nize motions recorded with the Microsoft Kinect V2. From the classification rates,
they extracted a similarity score based on the time-normalized log-likelihood. They
tested their method on one novice for the three dance steps and showed that the
scores were lower than those obtained by a teacher. As a demonstration, they also
integrated their method into a Walloon dance learning platform using the Microsoft
Kinect V2.

Morel et al. (2017) proposed a measure of limb spatial and temporal errors in a
motion based on DTW. From a set of motion sequences performed by experts and
aligned using DTW, and computed their mean and their variance, leading to an av-
erage motion, called “nominal motion”, and a “spatial tolerance” based on the vari-
ance. This process was performed separately for each limb (two legs, two arms, and
trunk), leading to a nominal motion and spatial tolerance for each limb. To compute
the spatial error of a novice trial, they aligned each limb motion with their nominal
motion using DTW, and compute a Mahalanobis distance between them, to account
for the spatial tolerance. As a measure of temporal errors, they computed the tim-
ing difference between the warping of each limb motion to their respective nominal
motion. They validated their spatial error measure on a dataset of tennis serves and
their temporal error measure on a dataset of karate motions, both annotated by pro-
fessional coaches. As a result, the best-fitting exponential curves were computed for
estimating the relation between measures and annotations of one expert, leading to
R2 = 0.57 for the spatial error measure of tennis serves, and R2 = 0.4 in average
(among two expert annotators) for the temporal error measure of karate motions.



46 Expert gesture evaluation: a state of the art

3.4.3 Score prediction

A regression or a classification model can be designed from the extracted features to
predict a score. The score to predict can either be derived from an objective measure
(timing, shot speed, years of practice, etc.), or be annotated by an expert.

Harrison et al. (2007) used bivariate functional PCA to analyze the development of
vertical jump performance on a sample of jumps performed by 49 children of about 4
to 10 years. Each jump trial was annotated by expert observers according to criteria of
developmental stage (Gallahue et al., 2006). They labeled each trial according to three
developmental stages. Discriminant analysis coupled with Mahalanobis distance was
then used to design a classification model. The best model yielded a mean accuracy
of 61% for each development stage of the hip-ankle coordination.

Zhang et al. (2010) analyzed driving skills of different drivers. From the steering
angle of the wheel, they performed a Discrete Fourier Transform (DFT, Welch 1967).
They then designed a classification model to recognize the level of twelve drivers
as typical or expert (two classes) from 30 normalized DFT coefficients. The model
consisted of a decision fusion of three independent classifiers, including a Multi-
Layer Perceptron (MLP) with a hidden layer of 40 neurons, a decision tree, and
a Support Vector Machine (SVM, Boser et al. 1992) with polynomial kernels. The
decision fusion was performed using a majority-voting method. They obtained a
classification accuracy of 79% for a model trained on a balanced dataset of expert
and typical drivers.

Harding and James (2010) analyzed snowboarding performance from half-pipe cham-
pionships. From video footage captured during competitions, they extracted features
related to the amount of time athletes spent in the air, and to their snowboard rota-
tion degree. They selected the two best features according to their correlation with
scores provided by the jury during the competition. They then trained a multiple
linear regression model with these two features to predict these scores, resulting in
R = 0.902 in average for the various competitions. No cross-validation procedure
was used.

Young and Reinkensmeyer (2014) analyzed video-extracted 2D kinematic data of
competitive diving performance. To predict a score given by a professional jury,
they used PCA following Troje (2002) to extract eigenpostures and PMs. They also
extracted a set of specific features commonly thought to influence dive judging, in-
cluding the splash area time evolution, the board tip trajectory, and the body center
coordinate trajectory. From these features, they selected different subsets, and per-
formed a second PCA on them (following Troje (2002) again). For each subset, they
designed a linear regression model with the PCs to predict the score provided by the
jury. They obtained the best results (R2 = 0.66) with the PMs and the three specific
features, using a leave-one-participant-out cross-validation procedure.
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Pirsiavash et al. (2014) also analyzed competitive diving, as well as figure skating
performances. From 2D kinematic data extracted from videos, they computed a
Discrete Cosine Transform (DCT, Ahmed et al. 1974) on each pose (i.e. each frame),
and trained a Linear Support Vector Regression (L-SVR) to predict the score of a jury
from the DCT of the pose. The developed regression models yielded R = 0.41 for
the diving evaluation, and R = 0.45 for the skating evaluation.

Alexiadis and Daras (2014) used quaternionic motion representations to align Mo-
Cap data spatially and temporally, to make them more comparable. On these aligned
data, they then proposed three similarity measures, using quaternionic correlations
on joint positions (i) and velocities (ii). The quaternionic representation of motion
data was used to be able to handle 3D coordinate variables jointly, representing them
as pure quaternions (with a zero scalar value). Inspired by the 2D optical flow liter-
ature, they also proposed a similarity score based on 3D flow (iii). They proposed
a weighted sum of these scores (which can be here considered as features), and
optimized these weights using Particle Swarm Optimization (PSO) (Kennedy and
Eberhart, 1995) to predict a ranking annotated by an expert. They validated their
method on an annotated dataset of Salsa motion, by computing an adapted version
of the Kendall rank correlation coefficient (Kendall, 1938). With optimized weights,
the dancers were ranked with 20.5% ranking error according to the adapted Kendall’s
equation.

From a dataset of karate motion, Zago et al. (2016) used PCA to extract eigenvectors
(called eigenpostures) and PCs weighting (PMs). They also extracted CoM kinematic
features. From these features, they selected different subsets, and performed a second
PCA on them. For each subset, they designed a linear regression model with the
first five PCs to predict the experience of the karateka, using a leave-one-trial-out
cross-validation procedure.2 They finally obtained the best Root Mean Square Error
(RMSE) for the combination of all features (RMSE = 3.72 years, R2 = 0.908).

3.4.4 Feedback

One of the main interests of evaluating a motion is to propose feedback, allowing
an improvement of the motion performed. However, most existing works limit their
focus to the evaluation process, and do not explicitly show how to use evaluation
results to provide feedback to the performer. Some methods are based on a rather
simple direct score. The feedback procedure for these evaluation methods can be
straightforward, by explaining the features involved in the score. However, the inter-
est is limited. A system can tell the user that s/he should improve her/his synchro-
nization, or her/his coordination, but the participant would not have a clue about

2A leave-one-trial-out procedure means that from the whole dataset of N trials performed by differ-
ent participants, N-1 trials are used to train the model, the excluded one is then tested on that model.
Note that the risk of this procedure is that the model can simply identify a participant from the training
dataset, rather than really predicting its level. A better procedure would be a leave-one-participant-out
procedure, excluding all trials of a participant from the training dataset.
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how to do so. It would be more interesting to provide feedback about lower-level
features, so that the subject knows which part of her/his motion should be corrected.

Concerning a similarity measure or a prediction of a model based on multiple fea-
tures, it can be interesting to investigate which features are mostly responsible for the
computed score. It would allow a feedback system to tell which feature should be
modified, and how it should be modified, to improve the similarity with the model
or the predicted score. An even more interesting information for the user could be a
visualization of an improved version of the motion.

In that direction, Young and Reinkensmeyer (2014) proposed an original method
which consists in synthesizing a new motion corresponding to a particular level.
From a score, they calculated the eigenpostures and PMs which would predict this
score using the linear regression coefficients (see Section 3.4.3), and using an inverse
processing of the motion decomposition (following Troje 2002), they calculated a
gesture corresponding to these eigenpostures and PMs. From the visualization of the
synthesized gestures from different scores, they saw that better dives were performed
with a straighter position of the legs, with a body path closer to the board tip, and
with a narrower splash area.

Pirsiavash et al. (2014) modeled expertise from their diving and skating datasets us-
ing an L-SVR on the pose DCT (see Section 3.4.3). To provide a feedback to the user,
they computed the gradient of the score obtained with L-SVR, and performed an
inverse-DCT to show the modification of the joint positions leading to an improve-
ment of the score.

Morel (2017) proposed a simple semantic feedback method, based on a previous
work presented in Morel et al. (2017) (see Section 3.4.2). For each limb’s spatial and
temporal largest error during a trial, she indicates the time, duration and direction
of the error. By comparing the trial to the nominal motion, the system indicates if a
limb is too high, low, left or right for spatial error, or if it is too late or in advance.

Patrona et al. (2018) proposed a similar semantic feedback method. First, they used
DTW for human action evaluation. They aligned positions as well as kinetic energies
of eight joints (elbows, wrists, knees and ankles) of a test motion with a reference
motion. They then proposed a semantic feedback using a fuzzy logic engine. The
feedback was both visual and textual, showing key frames corresponding to the
highest errors in position and velocity, and explaining which joint and at which
frame was causing the highest error, both for position and velocity features, and
proposing a correction to apply to the motion. This method allows an individual
feedback, showing explicitly to the user how to improve her/his own technique.

3.5 Discussion and conclusion

In this chapter, a state of the art was presented on expert gesture evaluation. The
various methods proposed can be divided into three main categories: evaluation
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from a direct score extracted from features, a similarity measure to a model, or the
prediction of a score using a regression or a classification model. Additionally, a few
works also focus on the development of feedback methods. A summary of all these
works can be found in Table 3.1.

These methods may have various advantages and drawbacks. Models based on di-
rect scores do not intrinsically depend on experts annotations. They are fully based
on the extraction of specific features, and do not rely on the training of an algorithm
supervised with the annotations. Instead, they are usually based on prior knowledge
of a specific discipline and therefore rarely allow generalization to other disciplines.
Models based on similarity measures are partly supervised, since the data used for
the modeling of the ideal gesture are supposedly performed by experts. However,
they are not optimized to predict the level of expertise for new instances using su-
pervised learning. For most of these methods, the validation is therefore limited to
statistical significance allowing the discrimination of two groups, or to examples of
the use of the method, and do not prove their accuracy in the evaluation of any per-
former’s level. Morel et al. (2017) investigated the correlation between their proposed
similarity measures and annotations. However, for the experiment, annotators were
specifically asked to evaluate some characteristics of the gestures evaluated by the
algorithms, such as the delay between two punches in karate, or accuracy of specific
limb positions in a tennis serve. Gløersen et al. (2017) analyzed the correlations be-
tween the extracted features and the FIS points of professional skiers. However, their
results were based on only six skiers, and they do not prove the generalization on
other performers (no cross-validation). Moreover, a large number of features was an-
alyzed, increasing the chance that one of them had a correlation with the FIS points
due to coincidence.

On the opposite, score prediction methods are based on classification or regression
models, trained to predict the level of any performer from the annotations of a
dataset. The quality of these models therefore depends on the quality of the annota-
tions. According to the discipline used as a case study, different types of annotations
can be derived and can be more or less objective. They can be a ranking in a com-
petition, or a subjective score annotated by a jury. In the last case, an average score
averaged from several independent annotators is preferred to reduce its subjectivity.

Unfortunately, none of these works provide their dataset publicly as a benchmark
for motion evaluation. Each one of the proposed methods is tested on a new dataset,
recorded for that purpose. It is thus never possible to verify their results, and more
particularly to compare different methods on the same data. Moreover, all these
works are generally validated on a single category of gesture. The generalization
to other gestures is left as an assumption. An exception can be raised to some de-
gree concerning the use of eigenpostures and PMs following Troje (2002) procedure,
as it has been successfully reused in a number of studies including various sports
disciplines.
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Reference Type Dataset (discipline, v, n, p) Features Model/Validation method

Harrison et al. (2007) S.P. Jump, 7× 2D, 49, 49 PCA Discriminant analysis

Leroy et al. (2008) D.S. Juggling, 5× 3D, 100, 10

- Height of the ball

- Elbow flexion/ext.

- Pelvis lateral oscillations

- Ball cycle duration

- Elbow flex./ext. cycle

- Pelvis oscillation cycle

Stat. significance tests

Zhang et al. (2010) S.P. Driving, 1, 1065, 12 steering angle DFT coefficients Voting:

- MLP

- SVM

- Decision tree

Harding and James (2010) S.P. Snowboarding, video, 169, 169
- 3 Air-time feat.

- 4 Degree of rotation feat.

Selection with SLR

Prediction with MLR

Bianco and Tisato (2013) S.M. Karate, 15× 3D, ns, ns DTW on 14 body angles Example (preliminary)

Young and Reinkensmeyer (2014)
- S.P.

- FB
Diving, 8× 2D, 16, 16 PCA on

- Eigenpostures

- PMs

- CoM traject.

- Splash area

- Board tip traject.

Linear regression

Pirsiavash et al. (2014)
S.P.

FB

Diving, 25× 2D, 159, ns

Skating, 25× 2D, 159, ns
pose-DCT L-SVR

Alexiadis and Daras (2014)
S.M.

S.P.
Salsa, ns, 9, 9

- Quaternionic R of joint pos.

- Quaternionic R of joint pos.

- “3D optical flow”

Score weighting using PSO

Tits et al. (2015) FB Piano, 27× 3D, 16, 4 PCs cumulative variance, PMs Preliminary comparison

Aristidou et al. (2015) S.M. Dance, 11× 3D, 3, 1 Laban, sliding-window stat. R Example (preliminary)

Dadashi et al. (2015) D.S. Swimming, 2× 3D, 5981, 18

variability (Cauchy Index) of:

- timings

- stroke rate

- arm coordination

- stroke length and speed

Stat.significance tests

Pham et al. (2016) S.M. Sign language, 1× 3D, 2, 1 Traject. double integral Example (preliminary)

Chen et al. (2016) S.M. Timpani, 21× 3D, 210, 7 Kinematics, k-NN classif. rate Ranking comparison

Zago et al. (2016) S.P. Karate, 42× 3D, 50, 10 PCA on

- Eigenpostures

- PMs

- CoM kinematics

Linear regression

Laraba and Tilmanne (2016) S.M. Dance, 11× 3D, ns, 2 HMM on
- 7 Müller

- 36 leg joints dist.
Example (preliminary)

- Morel et al. (2017)

- Morel (2017)

- S.M.

- FB

- Tennis, 25× 3D, 147, 17

- Karate 25× 3D , 95, 15

- DTW-Mahalanobis-distance

- Alignment difference
R2

Alborno et al. (2017) D.S. Karate, 25× 3D, 22, 5 CoM acc. peak-delta timing Stat.significance tests

Gløersen et al. (2017) D.S. Ski, 41× 3D, 72, 6

- PMs peak-to-peak diff.

- PMs timing diff.

- PMs stride symmetry

R

Zago et al. (2017) D.S. Juggling, 23× 3D, 36*, 12

- PMs auto-correlations

- PMs relative amplitudes

- PCs variances

Stat.significance tests

Patrona et al. (2018)
S.M.

FB
Basic actions, 20× 3D, N/A DTW+fuzzy-logic on

- pos.

- KE
Visual feedback examples

Table 3.1: Motion evaluation methods. D.S.= Direct Score. S.M.= Similarity Measure. S.P. = Score Prediction. FB = feedback. v = number

of captured variables. n = number of samples. p = number of participants. ns = not specified. PM = Principal movement. *: for each task. R =

Pearson’s correlation. R2 = coefficient of determination. SLR: Single Linear Regression. MLR: Multiple Linear Regression..KE = Kinetic Energy.
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On the other hand, while a large set of low or high-level features have been proposed
in previous works (see Chapter 2), all studies on motion evaluation generally focus
on a single category of low or high-level features. More particularly, few studies use
ergonomic features for motion evaluation, although this category of features could
be relevant for modeling expertise. A major objective of this thesis is to develop
different models of expertise, using a large set of features from different categories,
and confront them in the same evaluation task (see Chapters 8 and 9).

Another major limitation of the previously cited studies can be raised by comparing
them to existing work in different fields of motion processing. The fields of gesture
recognition, retrieval and synthesis are in high development due to their potential
uses in industry, for human-machine interaction, surveillance, and animation. Recent
works in this domain are based on the latest advances in artificial intelligence, i.e.
deep learning and reinforcement learning (Holden et al., 2015, 2016; Neverova, 2016;
Xia et al., 2017; Ding et al., 2017; Laraba et al., 2017; Devineau et al., 2018; Peng et al.,
2018). The gap with research in motion evaluation may be explained by the fact that
these deep-learning-based techniques require a large amount of data to be efficiently
used. However, the recording of datasets for motion evaluation is a laborious task.
A high-quality of the data is necessary in order to extract subtleties of the motion
characterizing expertise; and a large number of participants with different levels of
expertise is needed for the design of a complex model, able to discriminate a skilled
or a low-skilled performance.

In this context, we recorded a new high-quality MoCap dataset of Taijiquan gestures,
including 12 participants with different levels of expertise from novice to expert (see
Chapter 4). We also developed a new algorithm for automatic MoCap data recovery,
to ease the laborious process of MoCap data recording and correction (see Chapter 5).
In Chapter 9, we propose a first exploration of the use of deep learning technologies,
and more particularly transfer learning, for the evaluation of expert gestures. Finally,
we propose a generic method for visual feedback of the gesture evaluation, that can
be used with any score-prediction-based evaluation model (see Chapter 10).
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Chapter 4

Taijiquan motion capture dataset
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4.1 Introduction

4.1.1 The need for a dataset

The last decades have seen a new adage becoming more and more popular, saying:
“data is the new oil”. Due to the recent explosion of computational power, and of
new artificial intelligence algorithms, many ambitious projects can now be achieved,
including beating the best chess player in the world, autonomous vehicles, realistic
virtual agents, or even political manipulation. However, all these projects, achievable
in theory, need a major resource to be completed: data. Depending on the objec-
tive, hours of driving data, thousands of chess games, thousands of pronounced and
written sentences and their corresponding facial expressions, or millions of messages
or interactions on social media must be acquired through any means to be able to
design a specific model to solve a problem. Not only must they be acquired, but ide-
ally they should be of quality, in a sufficient amount, processed, and often annotated.
For instance, to train an algorithm for identification of an object in an image, a large
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number of images including this object and without it must have been acquired, and
labels should indicate which images contain the object to identify.

The aim of this thesis is the modeling of gestural expertise with the use of super-
vised machine learning algorithms. In this context, a motion dataset is needed. The
recorded data must be accurate enough to provide relevant information about the
expertise contained in the motion. Moreover, along with the data, labels about the
quality of the gesture must be provided.

Recent technologies enable accurate recording of motion in 3D, generally using opti-
cal MoCap systems, such as Qualisys or Vicon. As an example, in Table 3.1 showing
past studies on motion evaluation, most recent studies (from 2015) use 3D data gen-
erally recorded with an optical MoCap system, while many of the previous works
are based on 2D data extracted from videos, or signals extracted from specific sen-
sors (such as a wheel steering angle in Zhang et al. (2010)). A major issue of accu-
rate MoCap techniques is that they are expensive and time-consuming. To record a
performance of one participant, markers must be placed carefully on her/his body,
following precise indications. An expensive MoCap system consisting of multiple
cameras must be set up and calibrated. After the recording of a sequence, processing
is generally required to correctly identify all the trajectories. Missing data must be
reliably interpolated when possible. As a comparison, a cheap microphone is needed
to record a voice with a good quality, and a cheap camera is sufficient to capture an
image with a good quality, without post-processing. Moreover, a tremendous quan-
tity of audiovisual data can be found directly on the internet.

In the literature regarding motion evaluation (see Table 3.1), a new dataset has been
recorded for each research. Except for datasets of cyclic motions, 3D motion datasets
include fewer than 200 samples of the same gesture. The datasets including more
samples consist of cheaper sensors: Dadashi et al. (2015) used two accelerometers/-
gyroscopes to record 18 swimmers performing each 300 m trials in three different
conditions, leading to a total of 5981 front-crawl cycles, i.e. roughly 2000 cycles for
one condition. Zhang et al. (2010) simply recorded the wheel steering angle to an-
alyze the 1065 driving trials in two different conditions performed by 12 subjects.
Chen et al. (2016) recorded 3D motions of 210 percussive gestures performed by
seven subjects, using a Qualisys system. They recorded 21 markers placed on the
upper-body and the mallet. However, their analysis is based on the trajectory in the
sagittal plane of only one marker, placed at the extremity of the mallet. Apart from
these datasets, the largest 3D dataset in Table 3.1, containing full-body 3D motion
data for a rather complex gesture, was recorded by Morel et al. (2016), and contained
147 tennis serves performed by 17 subjects. Besides their small size, these datasets
are generally limited to a single type of motion. Finally, these datasets, recorded for
these specific studies, are generally not publicly shared to the scientific community.
As a consequence, not only a limited amount of accurate 3D motion data has been
recorded, but it is generally not publicly available.
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To address this issue, some works led to the publication of large motion datasets.
The most well-known dataset is the Carnegie Mellon University (CMU) Graphics
Lab Motion Capture Database (CMU, 2003), consisting of 109 activities recorded by
more than 100 subjects, with a total of 2605 motion sequences. The types of activi-
ties include basic human interactions and scenarios, locomotion, as well as physical
and sports activities, generally performed by a single subject. Another large public
dataset is the HDM05 Motion Capture Database (Müller et al., 2007), including about
1457 motion sequences of more than 70 activities, performed by 5 subjects. Mandery
et al. (2015) recorded the KIT Whole-Body Human Motion Database, a large dataset
of various locomotion and object-manipulation motions, including a total of 3704 mo-
tion sequences performed by 38 subjects. Apart from these datasets recorded with
accurate optical MoCap systems, a number of lower-quality datasets were recorded
for research on action recognition. Surveys on these datasets can be found in Ofli
et al. (2013); Zhang et al. (2016); Mandery et al. (2016); Shahroudy et al. (2016).

However, these datasets are generally intended for animation, or general action
recognition purposes. Only a few instances of each gesture are usually recorded,
and with rarely more than one participant performing the same gesture. The main
objective of such datasets is to include a wide range of different gestures. These
data are thus not suited for the analysis of expert gestures, where a large number
of instances of the same gesture by several performers is required. Moreover, lit-
tle information is provided on the performers, and never on their experience in a
particular activity.

Due to all these issues, a new 3D motion dataset of Taijiquan was recorded in the
context of this thesis, and was made publicly available.

4.1.2 Why Taijiquan ?

Most of the gestural disciplines are usually focused on a part of the body. For in-
stance, finger motions are crucial in piano, just as legs motions are important in
football. They can also be focused on the gesture purpose, such as the aesthetics
of dance gestures, the sound emitted by a musical instrument, or the speed or the
spin of a tennis ball. These disciplines are thus not the best candidate to promote a
general approach to study the question of motion evaluation.

Taijiquan is a martial art. However, it can be distinguished from other martial dis-
ciplines that are usually mostly fight-oriented. Taijiquan can be defined as an ’art
of body awareness’. The practice of this discipline intends for the development of
physical abilities such as balance, coordination, etc., as well as mental skills such as
concentration. These characteristics make Taijiquan a well-suited discipline to study
gesture expertise. Contrarily to most other disciplines, Taijiquan practice is focused
on the quality of the motion itself, as a whole. This general motion quality learned
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ID Gender
(M/F)

Age Weight
(kg)

Height
(cm)

Practice
(year)

Category Skill1
(0-10)

Skill2
(0-10)

Skill3
(0-10)

Skillµ
(0-10)

P01 M 56 95 196 32 Expert 9.3 9 10 9.43
P02 F 57 78 163 30 Expert 9.6 9.1 10 9.57
P03 F 62 58 162 24 Expert 8.5 8.5 9 8.67
P04 F 47 53 150 12 Advanced 8.2 8 8 8.07
P05 F 71 61 163 14 Advanced 6.8 7.4 7.5 7.23
P06 M 25 76 180 10 Advanced 8.4 8.6 8.5 8.5
P07 F 49 57 157 4 Intermed. 7 6.8 6.5 6.77
P08 F 34 56 158 3 Intermed. 8 7.3 7 7.43
P09 M 51 90 178 2.5 Intermed. 6.9 6.8 6.85 6.85
P10 F 59 55 163 1 Novice 6 5.8 6.5 6.1
P11 F 65 58 165 0.2 Novice 5 4.9 5 4.97
P12 M 28 96 181 0.6 Novice 5.8 6 5.75 5.85

M 50.33 69.42 168 11.11 7.46 7.35 7.55 7.45
SD 14 15.93 12.46 11.15 1.37 1.29 1.53 1.38

Table 4.1: Personal details of participants. Skill was ranked with a score between 0
and 10 by three teachers. Each one of their rankings, as well as their mean (Skillµ) is

indicated in this table.

by the way of Taijiquan can often be transferred to various other sports disciplines
(Caulier, 2010).

The following Sections present the multimodal Taichi dataset recorded during this
thesis with both Qualisys and Kinect data. In this work, only the Qualisys data
were used, and are described in the following Sections. The complete description,
including Kinect data, is available under the publication Tits et al. (2018a). The
dataset is available for research purpose (license CC BY-NC-SA 4.0), at:
https://github.com/numediart/UMONS-TAICHI

4.2 Participants

Twelve people volunteered to participate in the dataset recordings. All of them at-
tended courses in the Taijiquan school of Eric Caulier, and were assigned a category
according to their level: Novice, Intermediate, Advanced or Expert (three teachers
of the school). Each Taijiquan teacher also provided individual rankings for each
participant, on a scale of 0 to 10. These rankings were provided independently by
each teacher, from their personal knowledge of all the participants during courses.
Relevant personal details for each participant, including age, height, weight, gender,
practice experience and skill level can be found in Table 4.1.

https://github.com/numediart/UMONS-TAICHI
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4.3 Recording protocol

The MoCap system (Qualisys) consisted of 11 cameras fixed on the walls and ceiling
of a recording studio, leading to a recording area of 4× 4 m. This system tracked 68
retroreflective markers placed on the whole body (for detailed placement, see Table
4.2), with a frame rate of 179 Hz and a spatial accuracy < 1 mm. The dextrogyre
coordinate system was placed on the ground, in the middle of the recording area,
with the vertical axis as the z-axis. At the beginning of each recording, the participant
was standing approximately above the origin of the coordinate system facing the x-
axis direction. After each gesture, the participant was again approximately facing
the x-axis direction.

All participants performed 13 different techniques of the popular Taijiquan style
’Yang’, all learned at the Taijiquan school Eric Caulier. These techniques are divided
into two main categories: the Five Exercises (Wu gong), composed of five simple
gestures, and the Eight Techniques (Bafa), composed of eight more complex gestures
(see details in Table 4.3). All techniques are described in detail in Caulier (2010).
Videos of the gestures performed by a teacher are included with the dataset as sup-
plementary information. During the recording session, each participant was asked
to perform three different rendition types, as described in Table 4.4.

4.4 Data processing

Qualisys MoCap data were manually corrected using the Qualisys Track Manager
(QTM) software. The corrected data were then extracted in standard 3D motion data
formats (C3D and TSV). All missing data (generally due to marker occlusions) were
estimated with an automatic MoCap data recovery method developed during this
thesis, and presented in Chapter 5.

After the recovery process, 21 joint positions and orientations were extracted from
the 68 surface markers using a Visual3dTM pipeline as illustrated in Fig 2.1. All the
motion features used in this thesis were extracted from these data (see Chapters 2
and 6).

4.5 Manual annotation (segmentation)

All renditions were manually labeled from Qualisys data to identify beginning and
ending of each instance of a gesture. To that end, the MotionMachine framework
(Tilmanne and d’Alessandro, 2015) was used. The annotation software created from
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Marker label Marker placement

Head markers (left and right)
L/RFHD Approx. over left/right temple.

L/RBHD Back of the head, approx. in a horizontal plane with front head markers.

Torso markers
CLAV Clavicles, located approx. at the jugular notch.

STRN Sternum xiphoidal process.
CV7 7th cervical vertebrae.
TV10 10th thoracic vertebrae.

Arm and hand markers (left and right)
L/RAC Acromion.

L/RUA1-2 Cluster of two markers placed on the lateral surface of the upper arm.
L/R_HLE Humerus lateral epicondyle.
L/R_HME Humerus medial epicondyle.
L/RF1-2 Cluster of two markers placed on the lateral surface of the forearm.
L/R_RSP Radius styloid process.
L/R_USP Ulna styloid process.
L/R_HM1 2nd metacarpal (index).
L/R_HL5 Lateral head of 5th metacarpal (pinkie).

Pelvis markers (left and right)
L/R_IAS Anterior superior iliac spine.

L/R_IPS Posterior superior iliac spine.

Leg and foot markers (left and right)
L/R_FTC Most lateral prominence of the greater trochanter.

L/R_TH1-4 Cluster of four markers placed on the lateral surface of thigh.
L/R_FLE Femur lateral epicondyle.
L/R_FME Femur medial epicondyle.
L/R_SK1-4 Cluster of four markers placed on the lateral surface of shank.
L/R_FAL Lateral prominence of the lateral malleolus.
L/R_TAM Medial prominence of the medial malleolus.
L/R_FCC Aspect of the Achilles tendon insertion on the calcaneus.
L/R_FM1 Dorsal margin of the 1st metatarsal head.
L/R_FM2 Dorsal aspect of the 2nd metatarsal head.
L/R_FM5 Dorsal margin of the 5th metatarsal head.

Table 4.2: Table 2 - Marker placement. Labels and positions of 68 markers attached
(scratched) to an elastic neoprene suit, according to Qualisys and C-Motion specifi-
cation for standard full-body MoCap. Cluster markers (upper arm, forearm, thigh
and shank) are placed approximately on the body and are only used for tracking in

Visual3D™ software (C-Motion, Inc., Rockville, MD, USA).
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Gesture ID Name Movement type

Five exercises (Wu gong)
G01 Beginning position (Wuji) Static posture, symmetric

G02 Tree posture (Taiji) Static posture, symmetric
G03 Open and close lotus flower Symmetric
G04 Bring sky and earth together Symmetric
G05 Canalize energy Asymmetric (left or right)

Eight techniques (Bafa)
G06 Drive the monkey away Asymmetric (left or right)

G07 Move hands like clouds Asymmetric (left or right)
G08 Part the wild horse’s mane Asymmetric (left or right)
G09 Golden rooster stands on one leg Asymmetric (left or right)
G10 Fair lady works shuttles Asymmetric (left or right)
G11 Kick with the heel Asymmetric (left or right)
G12 Brush knee and twist step Asymmetric (left or right)
G13 Grasp the bird’s tail Asymmetric (left or right)

Table 4.3: Five exercises and Eight techniques of the Yang Taijiquan style.

Type ID Description of the rendition

T01 Five exercises Each exercise is repeated four times in a row. After the
four repetitions, a pause of 2-5 seconds is respected, before transition
to the next exercise. For the fifth exercise (Canalize energy), which is
the only asymmetrical gesture of the sequence, the four repetitions
consist of a succession of left and right side gestures, in the order:
‘left-right-left-right’.

T02 Eight techniques Each technique is repeated four times in a row.
After the four repetitions (‘left-right-left-right’), a pause of 2-5
seconds is respected, before transition to the next technique.

T03 Chained eight techniques Idem as the previous type, but no pause is
respected during transition between two different techniques.

Table 4.4: Types of renditions performed by the participants.
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Manual segmentation rules
Gesture Start End
G01 (static posture) (Static posture)
G02 (Static posture) (Static posture)
G03 COM lowa. COM low.
G04 COM highb. COM high.
G05 COM high. COM low, foot take-off.
G06 COM low. COM low.
G07 COM on one sidec. COM on the other side.
G08 COM back at the centerd (Foot take-off). COM back at the center
G09 Foot take-off. Foot starts to go down.
G10 COM back at the center. COM back at the center.
G11 COM low (Just before foot take-off). COM low.
G12 COM back at the center. COM back at the center.
G13 Just before foot take-off. COM back at the center.

aCOM low: local minimum of COM z-axis.
bCOM high: local maximum of COM z-axis.
cCOM on one side: local extremum of COM y-axis.
dCOM back at the center: local extremum of COM y-axis, generally near y-axis mean position.

Table 4.6: Manual segmentation rules for the 13 gestures based on visual indications
on direct 3D motion and COM coordinates.

this framework allows mouse-controlled simultaneous visualization of 3D move-
ments (Qualisys data), and 2D curves displaying temporal evolution of each coor-
dinate of their Center Of Mass (COM), estimated from the mean position of the 68
markers. COM coordinates can be used as a global visual indication for systematic
segmentation, as described in Table 4.6. Fig 4.1 shows an example of the annotation
procedure. In this example, gestures G06 and G07 are being annotated.

From annotations, Qualisys data were automatically segmented using the MoCap
Toolbox for Matlab (Burger and Toiviainen, 2013a) and MoCap Toolbox extension1.
All unsegmented files were named using the convention ’PppTttCcc’ (e.g. P01T01C01)
for which ’pp’ is the performer ID (see Table 4.1), ’tt’ is the type of the sequence
(see Table 4.4) and ’cc’ is the number of the clip (repetition of the same sequence).
All segmented files were named using the convention ’PppTttCccGggDddSss’ (e.g.
P01T01C01G01D01S01). ’gg’ indicates the gesture (see Table 4.3), ’dd’ indicates the
direction (01 for left and 02 for right – symmetric gestures are denoted D01), and
finally ’ss’ indicates the instance of the gesture (as each gesture is repeated several
times during a clip).

1MoCap Toolbox Extension : https://github.com/titsitits/MocapRecovery/tree/master /MoCap-
ToolboxExtension

https://github.com/titsitits/MocapRecovery/tree/master/MoCapToolboxExtension
https://github.com/titsitits/MocapRecovery/tree/master/MoCapToolboxExtension
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Figure 4.1: Screenshot of the annotation software. Layered display of: 1. 3D motion
(gray spheres); 2. 2D-graphs showing evolution in time of the COM coordinates (blue
= x, purple = y, pink = z); 3. Annotations (red vertical lines and labels). 4. GUI (blue
windows, allowing navigation in the file, and label edition). In this example, G06 has
been annotated, and G07 is being annotated. For G06, labels are placed when the
z-axis of the COM is low, and for G07, labels are placed when the COM y-axis if low

(COM is on the left) or high (COM is on the right).
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4.6 Kinect data

Simultaneously with Qualisys data, a Microsoft Kinet V2 was used. The Kinect is
a low-cost MoCap device, consisting of a single depth-camera, and allowing the
recording 25 3D body joints at a frame rate of approximately 30Hz. The data of both
systems were then synchronized manually. Alhough the Kinect data are not used
in this thesis, they could be used in the future to investigate the possibility of using
low-cost MoCap systems for the evaluation of expertise in gestures.

4.7 Conclusion

In this chapter, we presented a large 3D MoCap dataset of Taijiquan martial art
gestures (n = 2200 samples) that includes 13 classes (relative to Taijiquan techniques)
executed by 12 participants of various skill levels. Participants levels were ranked by
three experts on a scale of [0–10]. The dataset was captured simultaneously with (i) a
sophisticated optical MoCap system (Qualisys) consisting of 11 cameras that tracks 68
retroreflective markers at 179 Hz, and (ii) a Microsoft Kinect V2. Data of both systems
were synchronized manually. The data from the Qualisys system were manually
corrected, and then processed to complete any missing data (see Chapter 5). Data
were also manually annotated for segmentation. The data were initially recorded
for gesture recognition and skill evaluation, but they are also suited for research on
synthesis, segmentation, multi-sensor data comparison and fusion, sports science or
more general research on human science or MoCap.

To the authors’ knowledge, it is the first dataset of sports gestures comprising si-
multaneously a large number of participants (12), a large number of different classes
(13), and a variety of skill levels, and captured with two different MoCap systems.
This dataset is used in the following chapters for validation of most of the methods
proposed in the present thesis. These methods include morphology-independent
feature extraction (see Chapter 7), gesture evaluation models (see Chapters 8 and 9),
and a feedback model (see Chapter 10). Though only the Qualisys data are used
in the present research, the Kinect data could serve in future research on gesture
evaluation with low-cost sensors.
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5.1 Introduction

This chapter addresses a common issue of optical MoCap: missing data. The follow-
ing has been partly published under Tits et al. (2018b). It must be noted that this
work is not exclusively related to the field of gesture expertise evaluation, and can
be useful to any application using optical MoCap data.

When using an optical MoCap system, if a marker or a body part is hidden from
the cameras, its trajectory cannot be completely recorded, resulting in a gap in the
MoCap data. Several issues may cause gaps, including occlusions, marker reflec-
tion quality, lighting condition, calibration or the limited area covered by the system.
These gaps make it difficult and sometimes impossible to use the data (Liu and
McMillan, 2006; Aristidou et al., 2008; Howarth and Callaghan, 2010). A number of
methods have already been proposed to address this issue, based on various tech-
niques. One basic method is direct interpolation. From an incomplete trajectory of
a marker, the coordinates over time can be interpolated using standard methods,
such as linear, spline or monotone piecewise cubic interpolation (Fritsch and Carl-
son, 1980), amongst others. Those methods are sufficient for small gaps (typically
less than 0.5 second for human full-body motion (Liu and McMillan, 2006)), but are
ineffective for larger gaps. More advanced time-series interpolation methods have
been proposed, based on linear dynamic systems (Li et al., 2009), Gaussian process
dynamic models (Wang et al., 2008), or Kalman filters (Aristidou et al., 2008).

Other methods are based on the fact that MoCap data generally consist of highly re-
lated trajectories of several markers, due to fixed bone length and to limited degrees
of freedom in the skeleton. Expressing the incomplete trajectory using local coor-
dinates, based on trajectories of three additional markers or based on a rigid body
position and orientation, can be used to improve recovery (Howarth and Callaghan,
2010). Such coordinate transformation should reduce the variance of the trajectory
representation, thereby easing the interpolation process. However, the three markers
used for coordinate system transformation must have similar trajectories to the in-
complete marker for the process to be efficient. This method thus highly depends on
the number of complete marker trajectories available in the data.

Yet other methods for recovering missing data are based on human motion modeling,
trained on a pre-recorded dataset. Liu and McMillan (2006) trained a global linear
model and a set of local linear models from a training set of MoCap data. The
local models are defined using segmentation with probabilistic principal component
analysis (PCA), and K-means clustering. They first used the global model to recover
missing data, then, from the results, they assigned a local model to each frame using
a Random Forest classifier. On the other hand, Chai and Hodgins (2005) directly
retrieved nearest neighbors of incomplete frames in a dataset, and trained a local
linear model from these neighbors to recover the missing data. These methods are not
fully automatic as they need a large dataset for the training of the models. Moreover,
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the data to recover must have the same marker disposition as the one used in these
pre-trained models. It means that for a new type of MoCap data (with a different
marker disposition), an entire dataset must be recorded to train a new model.

Finally, some methods are based on matrix transformation techniques, using PCA
(Federolf, 2013; Gløersen and Federolf, 2016), singular value thresholding (SVT) (Lai
et al., 2011) or nonnegative matrix factorization (NMF) (Peng et al., 2015). These
methods consider the entire motion as a matrix, with columns representing 3D com-
ponents of all marker trajectories, and allow the use of information based on linear
relations between the columns to reconstruct a gap in the matrix. The transforma-
tions are all based on low-rank properties of MoCap data. A key point with these
methods is that a low-rank model of motion is trained on the available data of the
motion sequence itself, and does not require a training dataset. These methods are
thus automatic and can be used on any MoCap data (Feng et al., 2014).

A drawback of all previous methods is that the recovered trajectories may not respect
human body properties, including bones’ fixed lengths. Motion animations may thus
lead to unrealistic results. Yet, other methods are directly based on the body skele-
ton, forcing marker positions to respect these properties. These constraints were
successfully applied to several previously mentioned methods. Li et al. (2010) pro-
posed the BoLeRO algorithm, combining skeleton constraints with linear dynamic
systems. Tan et al. (2015) proposed a skeleton constrained SVT algorithm. Peng
et al. (2015) adapted NMF to a hierarchical block-based skeleton structure model.
However, such methods are generally significantly more computationally intensive
as they are based on iterative optimization procedures. Moreover, they are often not
automatic, as they are defined for a specific skeleton model based on a pre-defined
marker set. Nonetheless, automatic procedures exist to estimate a skeleton structure
in MoCap data (Kirk et al., 2005; De Aguiar et al., 2006).

Each one of the methods mentioned so far has different advantages and drawbacks,
possibly making them more or less effective according to different factors, includ-
ing gap length, number of markers, motion speed and complexity, and total motion
sequence duration. For instance, interpolation techniques are inherently indepen-
dent of the duration of the entire motion sequence and of the number of markers,
unlike matrix-based and machine learning based techniques. The latter indeed re-
quire training data based on the frames of the sequence without missing markers,
to model the relationship between markers. The quality of the model thus depends
on the size of the training set, i.e. sequence duration, and the number of markers.
On the opposite, machine-learning techniques may be more robust to gap length or
motion complexity than interpolation-based methods (Liu and McMillan, 2006).

To the authors’ knowledge, most previously proposed automatic MoCap data recon-
struction methods are based on low-rank or temporal properties of motion, and use
matrix operations to model human motion. Few papers focus on the use of machine-
learning techniques such as linear and non-linear regression (Seber and Lee, 2003;
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Bates and Watts, 1988) to model the motion of a missing marker. Moreover, no pre-
vious work known to the authors proposes the usage of ensemble learning to use
likelihoods of different models and construct a more robust global model from the
decisions of an ensemble of others (Dietterich, 2000; Hoeting et al., 1999).

Therefore, the aim of the research presented in this Chapter is to propose a probabilis-
tic averaging method that can be used with any ensemble of recovery models, and
that enforces movement constraints. This method is referred to below as Probabilistic
Model Averaging (PMA). The averaging process is based on the posterior likelihoods
of the distances between the recovered body points and other markers. To validate
the method, we used existing recovery models and developed four new regression-
based recovery models, which were used as inputs to the proposed probabilistic
averaging method.

5.2 Method

Fig 5.1 shows the overall approach of our data recovery method, which can be di-
vided into five main steps. First, parameters are extracted from each marker trajec-
tory of the motion sequence. These parameters mainly represent relations between
markers, and allow identification of related markers (termed as reference markers be-
low) and of their distance distributions. Then, various recovery models are applied
on the incomplete MoCap sequence, resulting in several candidate recovered se-
quences. For each candidate, a correction is applied to respect motion continuity
(except for interpolation which inherently respects motion continuity). From all re-
sulting individually recovered sequences, a weighted average is applied, in the spirit
of ensemble learning systems (Dietterich, 2000). Finally, a spacing constraint is ap-
plied on the recovered trajectory, enforcing plausibility of the distance with related
markers.

Note that it is good practice to center the motion sequence at the outset, by subtract-
ing the mean position of all the markers available in each frame. This process makes
it possible to reduce the component of global motion in the sequence, thus reducing
motion variations. After the gap recovery process, the mean position is added back
to translate the motion sequence to its original trajectories.

In the remainder of this Chapter, a motion sequence will be considered by a ma-
trix representing all the trajectories of all the recorded markers during the entire
sequence. This matrix has the dimension N × (3 · M), where N is the number of
frames of the sequence, and M the number of recorded markers. A marker trajectory
pj (j ∈ 1, ..., M) is represented as an N × 3 matrix.

The method was implemented with Matlab R2017a and the MoCap Toolbox (Burger
and Toiviainen, 2013b). The code is available for free download at: https://github.

com/numediart/MocapRecovery.

https://github.com/numediart/MocapRecovery
https://github.com/numediart/MocapRecovery
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Figure 5.1: Block diagram of the proposed method. The overall process can be di-
vided in five steps: 1) Extraction of marker trajectories parameters. 2) Individual
recovery models. 3) Time constraint: trajectory continuity. 4) Distance-probability

weighted averaging. 5) Spacing constraint: reference marker distance likelihoods.
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5.2.1 Reference marker definition

All individual recovery models, as well as the proposed spacing constraint, depend
on reference markers from which incomplete marker trajectories are to be recovered.
We propose an automatic method to define such reference markers, based on inter-
marker distance variations, inspired by skeleton-based methods where the intuition
is based on the fact that joints of a skeleton have limited distance variations, due
to bones’ fixed lengths and limited degrees of freedom. We hypothesize that in
many situations an incomplete marker trajectory can be recovered more effectively
with methods using reference marker information, due to the close relation between
the markers and their references. For instance, the wrist trajectory is more closely
related to the elbow or shoulder trajectory than that of the foot. For each marker
trajectory to be reconstructed, we can reorder related markers (referred to below as
reference markers, or references) using distance standard variation. We denote by
m the marker trajectory to recover, and pj any other marker trajectory (N × 3). The
distance variation is computed as the standard deviation of the Euclidean distance
between m and pj:

σj = std(||(m− pj)||) (5.1)

The marker pj with the smallest σj is the marker most related to m, i.e. the best refer-
ence for reconstruction of m. All markers can then be sorted as potential references
for reconstruction of m, according to their distance variation with it.

5.2.2 Model 1: Global Linear Regression

An incomplete marker trajectory can be modeled based on trajectories of all present
markers as input information. In the present context of human motion data, we have
a complex problem involving underlying non-linear relationships, with potentially
important quadratic or circular components, due to angular motions of skeleton seg-
ments. However, for the method to be fully automatic, the model training data are
limited to the incomplete sequence to recover itself, i.e. N frames minus the missing
frames.

Because many input variables are considered for the design of the model (3 ·M), the
model must be simple, to avoid overfitting. Accordingly, we selected linear regression
(Seber and Lee, 2003) for that task. Assuming that markers with lower distance
variation σj are more suited for predicting the missing marker trajectory, we defined
a threshold θ on σj, and avoided markers with σj > θ to simplify the model. This
way, only relevant markers (numbered MX) are used to model the position of the
incomplete marker. This threshold was experimentally set to 50 mm in this research,
as it gave the best results for the dataset, consisting of eight motion sequences with
41 markers (see Results, Table 5.1). Intuitively, a larger threshold could be considered
for data with fewer available markers.
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Let m be missing between frames n1 and n2. In other words, the rows from n1 + 1
to n2 − 1 of the matrix m must be recovered. A linear regression is performed on
each axis i of m. Let X = [pj]j:σj<θ,pj 6=m be the design matrix of dimension N × (3 ·
MX), including all marker trajectories pj with σj < θ, except the incomplete marker
trajectory itself m (in practice, we add an intercept column to the design matrix, all
missing frames are excluded, and we use only markers always present during the
gap of m to recover). Denote by X(n) as the n-th row of X, mi the ith column (or
spatial axis) of m (i ∈ 1, 2, 3), and mi(n) its n-th element. The missing part of m is
recovered using the following equations:

βi =argminbi
(∑

n
(X(n) · bi −mi(n))2)i={1,2,3},n∈{1,...,N}\{n1+1,...,n2−1} (5.2)

m̃ =[X · βi]1≤i≤3 (5.3)

where βi is the vector of regression coefficients of mi extracted through least square
error minimization, and m̃ is the trajectory recovered with global linear regression.
In practice, computation of m̃ is needed only for the missing frames.

5.2.3 Model 2: Local Interpolation

To simplify the modeling of the incomplete marker trajectory, skeletal motion proper-
ties involving strong relations between markers can be considered. A local coordinate
system can be defined based on three references, and hence reduce the variance of
the trajectory representation (Howarth and Callaghan, 2010).

Our second algorithm performs a local interpolation, i.e. an interpolation performed
in a local reference defined by three other markers (the references).

Denote by p1, p2, and p3 the first three reference markers (ordered by σj, see Eq. 5.1),
used to recover m. Define a local coordinate system based on these markers, with
three orthonormal vectors (u1,u2,u3) at each time (or frame) n (here n indicates the
row of a matrix (1 ≤ n ≤ N) For instance, p2(n) is the nth row of p2, i.e. a 1× 3
vector):

v1(n) =p2(n)− p1(n), u1(n) =
v1(n)
||v1(n)||

(5.4)

v2(n) =v1(n)× (p3(n)− p1(n)), u2(n) =
v2(n)
||v2(n)||

(5.5)

u3(n) =u1(n)× u2(n) (5.6)

where× indicates the cross product. m can then be projected into the local coordinate
system:

P =[u1(n)T u2(n)T u3(n)T] (5.7)

ml(n) =(m(n)− p1(n)) · P (5.8)
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P is the projection matrix, and ml the (projected) local trajectory.

ml can be interpolated with simple linear interpolation. The recovered local trajectory
can then be projected back into the original coordinate system:

m̃l(n) =

{
ml(n1) +

n−n1
n2−n1

· (ml(n2)−ml(n1)), f or n = {n1 + 1, ..., n2 − 1}
ml(n), otherwise

(5.9)

m̃(n) =m̃l(n) · P−1 + p1(n) (5.10)

The interpolation is possible under the condition that all three references are present
at frames n1 and n2. Also, if there are missing frames in a reference during the gap
(n ∈ {n1 + 1, ...n2 − 1}), the incomplete marker trajectory m will only be partially re-
covered. In this case, we can iterate the process with other references on the residual
gap (i.e. p1, p2, p4 if p3 was missing during the gap of m to fill, and so on) until m is
completely recovered.

5.2.4 Model 3: Local polynomial regression

As just discussed, local interpolation takes advantage of markers relations by per-
forming an interpolation in a local coordinate system. To further use that advantage,
we can model and predict the position of the missing marker from its neighborhood
(the local reference markers), using regression. As the number of input variables is
much lower than for global regression, we can use a more complex model, able to
model the non-linear relations between marker trajectories.

Our third algorithm is based on polynomial regression in the local coordinate system.
First, the trajectory to recover is projected into a local coordinate system (ml) defined
by reference markers p1, p2, and p3 (see Eq. 5.8). For each local coordinate of the
marker to recover, a polynomial regression is performed, using reference markers
local coordinates as input variables. In practice, only three input local coordinates
are useful: the origin of the system is located in p1 (p1 = (0, 0, 0)), the new x-axis
passes through p2, giving p2 = (xp2 , 0, 0), and the new y-axis is normal to the plane
passing through p1, p2, and p3, giving p3 = (xp3 , 0, zp3). Finally, the input set is
composed of three variables:

Xl = {xp2 , xp3 , zp3} (5.11)

For polynomial regression, the input variable set Xl is extended to quadratic polyno-
mials in the input variables, leading to a set of 9 variables:

Xq = {Xl
1, Xl

2, Xl
3, Xl

1
2
, Xl

2
2
, Xl

3
2
, Xl

1 · Xl
2, Xl

1 · Xl
3, Xl

2 · Xl
3} (5.12)
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The regression model is trained on the frames of the motion sequence where all
markers (ml ,p1,p2,p3) are present. The trained model is then used to predict all
missing values of ml :

βi =argminβi
(∑

n
(Xq(n) · βi −mi(n))2)i={1,2,3},n∈{1,...,N}\{n1+1,...,n2−1} (5.13)

m̃l =[Xq · βi]1≤i≤3 (5.14)

Finally, the recovered local trajectory m̃l can be projected back into the original co-
ordinate system (see Eq. 5.10). Like local interpolation, this method is processed
iteratively on sorted references until the trajectory of m̃ is completely recovered.

5.2.5 Model 4: Local Generalized Regression Neural Network

Generalized Regression Neural Network (GRNN) is a non-linear regression method,
already used in various applications (Specht, 1991). It is a variant of an artificial
neural network, consisting of four layers: the input layer, a radial basis layer, a sum-
mation layer and the output layer. GRNN allows to estimate any arbitrarily com-
plex function, given a sufficient number of observations (generating the radial basis
kernels). Comparatively to standard neural networks, GRNN does not require an
iterative training. Moreover, as the output of the model is bounded by the extrema
of the training dataset, a GRNN can only give physically meaningful outputs (Firat
and Gungor, 2009). It means for instance that a GRNN should not predict marker
positions with highly implausible distances.

The proposed algorithm applies a GRNN on local variables Xl , to model and predict
the local trajectory ml . The GRNN is thus trained with three input variables (in
practice, each input variable is standardized by subtracting its mean and dividing
it by its standard deviation). (Xl , see Eq. 5.11) and three output variables (m̃l),
according to:

m̃l(n) =
∑k ml(k) · exp(− ||Xl(n)−Xl(k)||2

2s2 )k={1,...,N}\{n1+1,...,n2−1}

∑k exp(− ||Xl(n)−Xl(k)||2
2s2 )k={1,...,N}\{n1+1,...,n2−1}

(5.15)

Parameter s determines the smoothness of the regression, and was experimentally
set to 0.3 in this research (for standardized input variables), as it gave the best results
for the dataset tested. Intuitively, a larger s could be chosen to recover slow motions,
and a smaller one for sharp and fast motions.

Like the other local recovery models, local GRNN process is iterated on sorted
marker references until the trajectory of m̃ is completely recovered.

All these individual models can be used independently to recover a trajectory, lead-
ing to several candidates. We explain in the next sections how these candidates are
further processed and combined to produce a more robust recovery.
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5.2.6 Time Constraint: Trajectory Continuity

Human motion time series are limited by two major constraints:

• a spacing constraint, defined by limited ranges of motion and fixed bone lengths;

• trajectory continuity, due to body inertia.

All recovery techniques that are based on interpolation intrinsically respect the con-
tinuity constraint. However, this is not the case of predictive models. To enforce
continuity on recovered data, we can add a linear correction ramp:

δn1 =m̃(n1)−m(n1) (5.16)

δn2 =m̃(n2)−m(n2) (5.17)

δ(n) =

{
δn1 +

n−n1
n2−n1

· (δn2 − δn1), f or n = {n1 + 1, ..., n2 − 1}
(0 0 0), otherwise

(5.18)

m̆ =m̃− δ (5.19)

For each axis, we compute the difference between the real value and the predicted
value at each border (δn1 and δn2), and subtract from the recovered trajectory a linear
ramp from δn1 to δn2 . An example of this correction is illustrated in Fig 5.2.

5.2.7 Probabilistic model averaging (PMA)

Depending on the context, each model can be more or less effective, making difficult
the choice of the best model, and the development of a robust recovery method. To
address this issue, we propose a model averaging method, based on the posterior
likelihoods of the distances between the recovered body points and other markers.
This method is inspired by Bayesian model averaging (Hoeting et al., 1999).

We estimate the a posteriori probability of each predicted location according to their
distance to reference markers. For references p1, p2, and p3, we estimate the distance
distribution with m throughout the entire motion sequence on non-missing frames,
using kernel smoothing density estimation ("kde" (Parzen, 1962) used with Silver-
man’s rule of thumb to choose the bandwidth of the kernel estimator (Silverman,
1986) ). For each recovery method k, a weight is computed:

dj =||pj −m|| (5.20)

f j(x) =kdedj(x) (5.21)

d̆jk(n) =||pj(n)− m̆k(n)|| (5.22)

ωk(n) = f1(d̆1k(n)) · f2(d̆2k(n)) · f3(d̆3k(n)) (5.23)
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Figure 5.2: Trajectory continuity correction. The yellow curve shows incomplete data
of a marker trajectory (m) on which a gap was introduced between frames 1130 and
1190 (only z-axis is shown). The blue curve represents the recovered data (m̃), and
the red curve shows the corrected data using trajectory continuity constraint (m̆) (see

Eq. 5.16-5.19).
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Here ωk is the weight of the trajectory m̆k recovered with method k, and f j is the
estimated probability density function of the distance between m and the reference
marker pj.

We then compute a weighted average of all the recovered trajectories:

m̄(n) = ∑K
k=1 m̆k(n) ·ωk(n)

∑K
k=1 ωk(n)

(5.24)

K is the number of individual models used for the recovery.

This process allows to give more importance to most likely recovered trajectories,
according to their distance with other markers. In the remainder of this Chapter, we
denote this method as Probabilistic Model Averaging (PMA).

5.2.8 Spacing constraint: reference marker distance confidence interval

A final step is applied on the recovered trajectory. Knowing the probability density
distribution of the distance ||p1 − m||, i.e. f1 (see Eq. 5.21), we can check if the
distance of the recovered trajectory with p1 respects the confidence interval:

CI = {x : F1(x) ∈ [0.05; 0.95]}, (5.25)

where F1 is the cumulated probability density function estimation of the distance
||p1 − m||, i.e. F1(x) =

∫ x
−∞ f1(ξ)dξ. The limits of this interval correspond to two

spheres centered on p1, with radii corresponding to:

r1 =arg(
x
F1(x) = 0.05) (5.26)

R1 =arg(
x
F1(x) = 0.95) (5.27)

If the recovered trajectory is outside these limits, it is projected onto the closest limit
sphere. Fig 5.3 illustrates the projection of m̄(n) onto the limits of the confidence
interval. In this example, the recovered frame m̄(n) is outside the confidence zone,
as x = ||p1(n)− m̄(n)|| > R1. The red arrow shows m̂(n), projection of the recov-
ered frame m̄(n) onto the R1-radius sphere centered at p1, to fit the soft skeleton
constraint. If the recovered frame is already in the confidence zone, no correction is
applied: m̂(n) = m̄(n). This process is thus used only if the recovered frame has low
a posteriori probability, i.e. an unusual distance with its first reference marker p1.

A stricter version of the spacing constraint can be applied by recursively projecting
the recovered point onto the CI obtained for several reference markers (e.g. the first
three references p1, p2 and p3), iteratively until the point is at a plausible distance of
each reference.
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Figure 5.3: Reference distance soft constraints. The green intensity colormap indi-
cates the probability of presence for the recovered frame. If the recovered frame m̄(n)
is outside the confidence zone (delimited by spheres of radii r1 and R1), it is projected

onto the closest point in this confidence zone (m̂(n)).



78 Robust and automatic motion capture data recovery

File name Type of motion #markers Duration (s) #frames fps
HDM1 Locomotion on the spot 41 33.25 3990 120
HDM2 Shelf (while walking) 41 70.83 8500 120
HDM3 Kicking and punching 41 63.93 7671 120
HDM4 Chair, table, floor 41 62.79 7535 120
HDM5 Clapping and waving 41 57.94 6953 120
CMU1 Break dance (Jumptwist) 41 6.75 810 120
CMU2 Break dance 41 37.5 4499 120
CMU3 Martial art (Empi) 41 43.35 5202 120

Table 5.1: Motion sequences used in the methods comparison.

5.2.9 Experiments

To validate our method, we tested each method used individually as well as the
method combination with PMA. For such testing, we used the online CMU MoCap
database (http://mocap.cs.cmu.edu/) (Hodgins) and the HDM05 database (http://
resources.mpi-inf.mpg.de/HDM05/) (Müller et al., 2007). They contain a high number
of various motion sequences, and they have been used by much of the related work
(Liu and McMillan, 2006; Li et al., 2010; Tan et al., 2013, 2015; Peng et al., 2015;
Gløersen and Federolf, 2016). Table 5.11 shows the motion sequences selected for the
methods comparison. Motion sequences were selected to include a large variety of
motions, in terms of complexity, type of motion, and duration.

The performance of the recovery method on a motion sequence may depend on
different factors, including:

• The number of incomplete and complete marker trajectories

• The length of the gaps

• The sequence duration

• The motion complexity or periodicity

To analyze the performance of each method according to these factors, we introduced
three concomitant gaps into our motion sequences, at random locations (uniformly

1

The files names in this table corresponds to the following files in the respective datasets: HDM1=
HDM_mm_01-02_03_120, HDM2 = HDM_mm_02-02_02_120, HDM3 = HDM_mm_03-02_01_120,

HDM4 = HDM_mm_04-01_02_120, HDM5 = HDM_bd_05-01_01_120, CMU1 = 85_02, CMU2 = 85_12,
CMU3 = 135_02.

http://mocap.cs.cmu.edu/
http://resources.mpi-inf.mpg.de/HDM05/
http://resources.mpi-inf.mpg.de/HDM05/
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distributed random markers and frames). We applied each method on these incom-
plete motion sequences, and extracted the recovery error for each method:

ε =
1
g

g

∑
j=1

1
n2j − (n1j + 1)

n2j

∑
n=n1j

||m̂j(n)−mj(n)|| (5.28)

g is the number of random gaps created, n1 j and n2 j delimit the location (in frames)
of the randomly introduced gap j, and mj and m̂j are respectively the original and
the recovered trajectories. We iterated this process 20 times with different random
gap locations, and a mean recovery error was extracted from all iterations to estimate
the general performance of each method. To analyze the influence of the sequence
duration, fragments with different duration were extracted from each motion file.

Our method performances were compared to related work available online, namely
the BoLeRo algorithm from Li et al. (2010) (Matlab code available for download at
: https://github.com/lileicc/dynammo) and the weighted PCA-based reconstruction
method from Gløersen and Federolf (2016) (Matlab code available for download at
: https://doi.org/10.1371/journal.pone.0152616). In the sequel, these methods will be
identified with the following numbers and acronyms:

1. Global Linear Regression (GLR)

2. Local Interpolation (LI) (Howarth and Callaghan, 2010)

3. Local Polynomial Regression (LPR)

4. Local GRNN (LGRNN)

5. weighted PCA-based method (PCA) (Gløersen and Federolf, 2016)

6. BoLeRo algorithm with soft bone constraints (BoLeRo) (Li et al., 2010)

We used the soft bone constraints version of the BoLeRo algorithm, with 16 hidden
dimensions as proposed by Li et al. (2010). The PCA-based method was used with the
parameters proposed by their authors, using the consecutive reconstruction strategy
for multiple gaps (Gløersen and Federolf, 2016).

All results were obtained in MATLAB R2017a on a computer with Intel Core i7-
4712HQ 2.3 GHz and 16 GB RAM running Windows 10.

5.3 Results

In this section, we present the results of the recovery on different simulated incom-
plete motion sequences. We analyze the influence of gap length, motion sequence
duration, the number of incomplete marker trajectories, and the influence of the mo-
tion type.

https://github.com/lileicc/dynammo
https://doi.org/10.1371/journal.pone.0152616
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5.3.1 Gap length

Fig 5.4 shows the results for two different motion sequences (respectively CMU1 and
CMU3). In both cases, BoLeRo gives higher errors than all other methods. Moreover,
the processing time, due to the iterative optimization process of the method, is sig-
nificantly higher than others. For instance, the process duration is above the minute
for filling three gaps of 2 seconds in the file CMU3, against less than a second for
all other individual methods. For these reasons, and for better graphics readability,
BoLeRo is left out in the remaining of the results.

On the right graphs, we can see results for all individual methods, except BoLeRo.
Concerning the MoCap sequence CMU1 (top graph), Fig 5.4 shows a clear separation
of each method accuracy, where LGRNN seems to reach the best accuracy (20.2 mm
mean error for three random gaps of 5 seconds). Accuracy of all methods seems
to decrease with gap size. Concerning the MoCap sequence CMU3 (bottom graph),
GLR seems to give the best results, with a mean recovery error of 12.7 mm for three
random gaps of 5 seconds.

Fig 5.4 also shows results of model averaging of several methods (dashed lines). In
general, each combination of individual methods (all but 5 (PCA), all but 2 (LI),
and all methods) seems to lead to an error comparable to that of the best individual
methods in general. Our PMA method thus seems robust to gap size.

5.3.2 Motion sequence duration

Except for our most basic method based on interpolation (LI), each individual method
performance may depend on the motion sequence duration. Indeed, more frames in
the sequence means more information (more possible data variation), and more sam-
ples for model training.

To illustrate the influence of sequence duration on performance of gap recovery
methods, fragments with different durations were extracted from each motion file.
Fig 5.5 shows the mean recovery error for different sequence durations, for different
motion sequences. We can see on each graph that all methods follow similar patterns,
showing that their performance highly depends on the specific motion. Nonetheless,
for most graphs (except for HDM5), the mean recovery error seems to be higher
for sequence durations of 5 seconds, and decreases for a sequence duration of 10
seconds. Beyond that duration, the recovery is not much improved. Concerning in-
dividual methods, LGRNN seems to be more robust to sequence duration, compared
to other regression methods. For long durations, GLR seems to give the best results
of all individual methods.

For all durations and all motion sequences, PMA effectively weights each individual
method, hence providing optimal recovery in any context. The best combination is
the averaging of all methods but LI (dark red dashed line). Our PMA method is thus
robust to motion duration.
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Figure 5.4: Mean recovery error for different gap sizes and gap recovery methods.
Top: CMU1. Bottom: CMU3. Left: results including BoLeRo method. Right: results
without BoLeRo method. Each point represents the mean of recovery errors, com-
puted with 20 iterations, of three randomly created gaps of the same length (0.5, 1,
2 or 5 seconds). Solid lines show results for each individual method. Dashed lines
show results for distance-probability averages of various combinations of individual

methods.



82 Robust and automatic motion capture data recovery

Figure 5.5: Mean recovery error for different sequence durations and gap recovery
methods. To illustrate the influence of sequence duration on performance of gap
recovery methods, fragments of different durations were extracted from each motion
file. Each point represents the mean of the recovery errors computed on 20 itera-
tions of three randomly created gaps of 1 second. Continuous lines show results for
each individual method. Dashed lines show results for PMA with various methods

combinations.
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Sequence ε̄, no
constraint
(mm)

ε̄, constraint
(mm)

Difference
(mm)

t-test p-value

HDM1 8.1 6.6 1.5 p < 10e− 5
HDM2 4.8 4.4 0.4 p = 0.46
HDM3 5.5 5.2 0.3 p = 0.07
HDM4 8.5 7.4 1.2 p = 0.08
HDM5 4.5 3.0 1.5 p = 0.001
CMU1 17.1 15.7 1.5 p = 0.008
CMU2 14.4 13.5 1.0 p < 10e− 3
CMU3 10.5 8.4 2.1 p < 10e− 10

Table 5.2: Effect of constraints on mean recovery error (t-test, n = 200; conditions:
3 gaps of 1 seconds). Paired t-test (n = 200) on constraints effect on PMA for the
reconstruction of 3 gaps of 1 second, introduced into different motion sequences.

Individual methods 1 to 4 were used in this test.

5.3.3 Number of concomitant gaps

Except for basic interpolation or dynamic filtering methods, the reconstruction qual-
ity of one marker trajectory depends on the presence of reference markers. If several
markers are missing at the same time during the motion sequence, less information
is available for reconstruction. According to the method, the reconstruction quality
may be influenced differently. Fig 5.6 shows the mean recovery error of individual
methods and their PMA combinations for different motion sequences, and for differ-
ent numbers of markers missing at the same time (gaps of one second). We can see in
general that for all motion sequences and for all methods, the recovery error grows
with the number of concomitant gaps. Again, PMA generally give the best results.

5.3.4 Constraints effect

For all previous results, time and spacing constraints were applied for all individual
methods and model averages. To verify the effectiveness of these constraints, PMA
reconstruction was tested with and without constraints for each motion sequence,
with 200 iterations of three gaps of one second. For each motion sequence, a paired t-
test was performed on the mean recovery error of the 200 iterations with and without
constraint, as shown in Table 5.2.

Results show that for almost all tested motion sequences, PMA yields a significant
improvement of the recovery method. The constraints did not improve the recovery
for the sequence HDM2 (larger p-value), but this may be due to the fact that the
recovery error is already low without constraint (ε̄ = 4.8 mm).
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Figure 5.6: Mean recovery error for different numbers of missing markers and gap
recovery methods. Each point represents the mean of recovery errors computed over
20 iterations of a number of randomly created gaps of 1 second (1, 3, 6, 10 or 20 gaps).
Solid lines show results for each individual method. Dashed lines show results for

distance-probability averages of various methods combinations.
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Sequence ε̄, no
constraint
(mm)

ε̄, constraint
(mm)

Difference
(mm)

t-test p-value

HDM1 40.9 13.5 27.4 p < 10e− 10
HDM2 14.4 8.4 6.0 p < 10e− 3
HDM3 32.2 10.8 21.4 p < 10e− 10
HDM4 29.8 16.1 13.7 p < 10e− 8
HDM5 25.0 8.6 16.4 p < 10e− 10
CMU1 80.8 39.1 41.7 p < 10e− 10
CMU2 27.7 26.2 1.5 p = 0.16
CMU3 22.1 19.6 2.6 p = 0.02

Table 5.3: Effect of constraints on the mean recovery error (t-test, n = 200; conditions:
10 gaps of 5 seconds). Paired t-test (n = 200) on constraints effect on PMA for the
reconstruction of 10 simultaneous gaps of 5 seconds, introduced into different motion

sequences. Individual methods 1 to 4 were used in this test.

Table 5.3 shows a similar analysis in a situation of low marker presence. In this
case, 10 simultaneous gaps of 5 seconds were introduced into each motion sequence.
We can see that in such situation, PMA’s mean recovery error is much higher, and
constraints always improve it significantly, up to 40 mm for CMU1.

5.3.5 Synthesis - mean results

As a synthesis, fig 5.7 shows the mean results of each method, obtained from the
mean of the recovery errors on all the selected motion sequences. It can be seen that
the various PMA combinations give more robust reconstruction regardless of the type
of motion, the gap length (left graph), the duration of the motion sequence (center
graph) and the number of incomplete marker trajectories (right graph). Among the
individual methods, there is no clear difference of performance according to gap
length. The local GRNN method seems more robust to gap length: it allows to
recover three concomitant gaps of 5 seconds with a mean error of 10 mm. All other
methods lead to a mean error above 15 mm. The local GRNN seems to be more
robust to sequence duration. A duration of 5 seconds (with 41 markers, 120 fps)
allows to train an effective model to reconstruct three concomitant gaps of 1 second
with a mean error of 12 mm. However, for a longer sequence (40 seconds), GLR
gives the best results, with a mean error of 9 mm. All individual methods are highly
sensitive to the number of concomitant gaps, and thereby to the number of markers
available to predict the missing trajectories. Finally, PMA systematically improves
the gap recovery, independently of motion type, gap length, sequence duration or
number of missing markers. As the local interpolation method seems to be the less
effective, the best method combination is the averaging of methods 1, 3, 4 and 5.
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Figure 5.7: Mean recovery error for different recovery methods, for all test motion
sequences. Left: different gap lengths (3 concomitant gaps, total sequence duration);
Center: different motion durations (3 concomitant gaps of 1 second); Right: different
numbers of concomitant gaps (gaps of 1 second, total sequence duration). Each point
represents the mean of recovery errors computed over 20 iterations of a number of
randomly created gaps. Solid lines show results for each individual method. Dashed

lines show results for PMA with various individual methods combinations.

5.3.6 Visual results

Besides error minimization in MoCap data reconstruction, the visual result is another
important criterion, especially if data are used for an animation purpose. Moreover,
simulated gaps allow for a comparison of the different methods based on objective
and quantitative results, but may not completely represent the ground truth. Gaps
occurring in real situation may be more complicated to recover than randomly sim-
ulated ones. For instance, when a marker is occluded in a real situation, it is likely
that the neighbor markers are also occluded. It is also very likely that a marker is
recurrently occluded during a MoCap session, due to its placement on the body. Fig.
5.8 shows visual results of gap recovery with pchip interpolation (baseline), weighted
PCA (Gløersen and Federolf, 2016) and our method, for three MoCap files originally
recorded for various research and applications2. These motion sequences were se-
lected as they are ground truth data, involving a high number of marker occlusions.
A baseline method such as pchip interpolation (Fritsch and Carlson, 1980) could not
recover missing data with sufficient accuracy for effective use of these files:

• A karate MoCap sequence with 25 optical markers, recorded at 250 fps (dura-
tion: 53 s, minimum marker presence: 86%, maximum number of simultaneous
gaps: 12). This motion sequence involves sharp movements, difficult to recover
with interpolation.

• A contemporary dance performance with a fall, recorded with 68 optical mark-
ers at 180 fps (duration: 57 s, minimum presence: 65%, maximum number of

2Data can be retrieved at: https://github.com/titsitits/MocapRecovery

https://github.com/titsitits/MocapRecovery
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simultaneous gaps: 26). This motion sequence involves long and simultaneous
gaps on a large number of markers.

• A contemporary dance performance where the dancer performs a roulade on
the ground, recorded with 68 optical markers at 180 fps (duration: 13 s, mini-
mum presence: 34%, maximum number of simultaneous gaps: 30). This motion
sequence has a poor quality for all markers throughout the whole sequence, as
a roulade leads to many and frequent occlusions.

For better visualization, videos are supplied in supporting information (see the videos
provided at https://github.com/numediart/MocapRecovery). All screen-shots and
videos were created with the MotionMachine framework (Tilmanne and d’Alessandro,
2015).

Though objective results cannot be obtained in this context, we can observe that
the movements reconstructed with our method generally seem realistic and respect
movement constraints (for continuity, see the videos). Highly unrealistic results are
obtained with pchip when gaps occur at the beginning or the end of a sequence. This
is due to the fact that the recovered data are extrapolated and not interpolated.

The method proposed by Gløersen and Federolf (2016) obtained particularly bad re-
sults on the roulade motion sequence. This may be due to the fact that the method
assigns weights to trajectories based on mean distance between markers. However,
with roulade or similar movements, all limbs are gathered and their distance is re-
duced. In this case, distance standard deviation would be a more robust indicator of
the relation between neighbor markers.

Videos show results with all individual methods, without constraints, and with PMA
and spatial and temporal constraint. We can observe that PMA and the constraint im-
prove the stability of the recovered movement, avoiding glitches and discontinuities
in marker trajectories.

Finally, unrealistic results may appear for each method. In this case, it is possible that
the error is due to corrupted original data, such as a swapping of marker trajecto-
ries. Several MoCap data softwares enable MoCap data post-processing, allowing to
correct swapped trajectories, or simply to remove incoherent data. This step is hence
recommended before recovery to obtain better results.

5.4 Discussion

Our PMA method presents several advantages compared to the available state of the
art. It is fully automatic and does not require any prior knowledge or any pre-trained
model. It can be used on MoCap data recorded with any marker set. Graphical

https://github.com/numediart/MocapRecovery
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Figure 5.8: Visual comparison of different gap recovery methods on different motion
sequences, with different marker sets. Red: original data. Gray: pchip interpolation
(baseline) (Fritsch and Carlson, 1980). Blue: Gløersen and Federolf (2016). Green:

our algorithm (PMA with constraints).
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results show that PMA is robust to various factors, including gap length, sequence
duration, the number of simultaneous gaps, and the type of motion. Additionally,
the use of temporal and spacing constraints significantly improves the reconstruction,
especially in challenging conditions (see Table 5.3).

Figs 5.4-5.7 show results where spacing and time constraints were applied to each
individual method. These constraints may indeed be applied afterwards to any pre-
diction method. The improvement of recovery after method combination is hence ex-
clusively due to PMA, and confirms its effectiveness. In terms of quantitative results,
no individual method shows better performance in general. All individual methods
are more or less sensitive to the context, including motion type, gap length, sequence
duration or the number of simultaneous missing markers. In contrast, PMA seems to
take advantage of every individual method, improving the robustness of the recov-
ery algorithm. Moreover, as averaging is based on distance with reference markers,
PMA partly takes skeleton constraints into account.

Our methods could not be compared to some recently proposed methods, due to
the unavailability of the code. However, the recent skeleton-constrained SVT method
from Tan et al. (2015) (not included in our study), based on both skeleton constraints
and low rank properties, achieved similar results to BoLeRo (Li et al., 2010): their
improvement over BoLeRo mainly lies in execution time, as explained in Tan et al.
(2015). Their constraint-fitting optimization method converges significantly faster
than BoLeRo.

The effectiveness of the method proposed in the present study, including PMA and
time and spacing constraints, is independent of the individual recovery model. It can
theoretically be applied to any other set of individual recovery models in the future,
possibly leading to better performance.

5.4.1 Limitations

The methods included in the present study rely on several parameters, including
the threshold for reference marker selection in GLR, the smoothing parameter in
LGRNN, parameters from w-PCA (Gløersen and Federolf, 2016), as well as confi-
dence interval thresholds for spacing constraints. All these parameters were experi-
mentally chosen in this research, as they gave the best results for the dataset tested
(see Table 5.1). The user should adapt these parameters for her/his own data if nec-
essary. Optimal parameters could depend on MoCap data, including for instance the
number of recorded markers, their particular placement, the complexity or speed of
the motion, data accuracy, or noise due to marker vibrations or camera quality. For
instance, a larger threshold for the linear regression model could be considered for
MoCap data with fewer available markers, and the optimal smoothness parameter
for LGRNN could depend on the smoothness of the motion itself.
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For the validation of the proposed methods, gaps were introduced into motion se-
quences at random locations. It is possible that in some particular cases, a marker
can be isolated, without any highly related reference. If this marker is missing, it
could lead to a poor recovery. This issue thus depends on the placement of markers
It is hence relevant to consider this aspect when defining marker placement, to avoid
isolated markers. On the other hand, markers placed too close to each other risk to be
occluded simultaneously. A trade-off must thus be considered for their placement.

PMA has some limitations in comparison to a method such as BoLeRo (Li et al., 2010).
In case of a blackout, i.e. when all markers disappear at the same time, a method
based on a predictive filter such as Kalman filter can reconstruct an entire frame, and
then use gradient descent or a similar optimization method to fit skeleton constraints,
whereas PMA needs at least three present markers as references to evaluate distance
probabilities. However, this is an extreme case, which can generally be avoided with
an efficient use of the MoCap system.

5.4.2 Improvement prospects

Our methods could be improved in various ways. First, human motion is not a sta-
tionary process (Chiari et al., 2005). Each individual model might be made more
efficient by giving more importance to motion data that are close to the gap to re-
construct. For instance, for each gap, a local model could be trained on a limited
time window centered on that gap. The distance probabilities could also be locally
defined on a time window. However, this would limit the number of available data
for model training.

Secondly, we could use a more complex constraint fitting method, making use of a
dynamic model such as the Kalman filter (Kalman et al., 1960) to ensure trajectory
continuity. Additionally, an optimization procedure could be used instead of projec-
tion for skeleton constraints fitting whenever the inter-marker distance is outside the
confidence interval. However, this could significantly increase execution time.

Finally, an original interest in the distance variation density estimation is the pos-
sibility to assess the quality of the reconstruction. It could further be used as an
indication to identify and verify the most sensitive parts of the data, and possibly
reject them and reprocess them with another configuration or method.

5.4.3 Processing time consideration

It is interesting to note that in human motion data, adjacent frames are very similar
if the frame rate is high enough. In this case, data can be easily subsampled with-
out losing much information for model training. This subsampling can drastically
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Nb. files Nb. frames Incomplete
frames

Incomplete
trajectories

Missing
positions

Average N/A 38131 5177 10.73 6417
Maximum N/A 61663 17804 21 23788
Total 104 3965668 538396 1116 667408

Table 5.4: Taijiquan MoCap dataset recovery.

decrease computation time, either for computing reference weights (Eq. 5.1), for
individual model training, as well as for kernel smoothing density estimation (Eq.
5.21).

Though it is not the initial goal of the proposed algorithm, each individual method
based on regression, as well as their combination with PMA could be adapted for
real-time purpose. Each individual model and distance distribution estimation can
be trained on previously recorded data, and can be effective after a few seconds of
recording. In this case, the time constraint would be limited to information about
previous data. A Kalman filter would be appropriate for this task.

5.5 Taijiquan dataset recovery

In the present thesis, the proposed method has been used to process the Taijiquan
dataset presented in Chapter 4. This process ensures the use of high-quality data in
the next steps of the framework proposed in this thesis for gesture evaluation.

The method was applied on the unsegmented data files, allowing a finer modeling of
the distances between markers, as well as a more efficient training of the various algo-
rithms used in the method. As illustrated in Fig 5.7, a longer motion sequence allows
a more robust recovery. Moreover, the data recovery process was applied on the po-
sitions of the 68 surface marker presented in Table 4.2, before the extraction of joint
positions and orientations with Visual3DTM. A larger number of markers implies
more highly related trajectories, allowing a finer recovery of the missing marker tra-
jectories. Table 5.4 summarizes the recovery of missing data in the Taijiquan dataset.
The dataset consists of 104 unsegmented files of 38131 frames in average (one file
per recording). The average number of incomplete frames per file was 5177, and the
average number of incomplete trajectories per file was 10.73. For the entire dataset,
a total of 667408 positions were missing and recovered with the proposed method.
The joint positions and orientations were then extracted from the recovered data.

5.6 Conclusion

In this chapter, we proposed an original automatic method, Probabilistic Model Av-
eraging (PMA), for robust reconstruction of missing MoCap data. The robustness of
our method relies on two major steps:
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1. The weighted combination of several models, based on the posterior likelihoods
of inter-marker distances.

2. The application of simple but effective constraints, enforcing trajectory conti-
nuity and plausible distance of reconstructed trajectories with related markers.

To support and validate our model-averaging method, several reconstruction meth-
ods based on regression and local coordinates were proposed, and were found to
compete with state-of-the-art methods. Results show that PMA used with the con-
straints outperforms individual methods in various conditions, including various
gap lengths, motion sequence durations and numbers of simultaneous gaps.

Our method has the advantage of being fully automatic. The algorithm is data-
driven, and does not need any prior knowledge or any pre-trained model. Moreover,
the model averaging and the proposed constraints are general and can be used with
any other individual reconstruction method, leading to possible future improvement.

In the present thesis, the proposed method was used for the processing of the Taiji-
quan MoCap dataset.
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6.1 Introduction

In Chapter 2, we presented various features allowing a low-level or high-level repre-
sentation of motion. Among these features, we presented the category of ergonomic
features. Ergonomics is closely related to skill, as it is the study of motor control
effectiveness while minimizing energy expenditure and risks of injury. However, no
previous work known to the author used this type of feature for evaluation of ex-
pertise. Andreoni et al. (2009) proposed a method based on perceived discomfort
(see Section 2.3.6.4) to automatically assess the ergonomy of a posture from MoCap
data, showing a potential use of ergonomic features in quantitative motion quality
assessment.

In this Chapter, present a new set of ergonomic features is presented, inspired by
Taijiquan. One major component in the learning of Taijiquan is focused on the ergon-
omy of motion, as extensively developed in the work of the ergonomist and Taijiquan
teacher Eric Caulier (Caulier, 2010). A collaboration with him led to the development
of a new set of ergonomic features, inspired by principles largely taught in the school
of Taijiquan Eric Caulier. The proposed feature set can be divided into four main cat-
egories, as presented in the following sections:

93
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Figure 6.1: Body joint representation and naming convention.

• Stability (see Section 6.2)

• Joint Alignments (see Section 6.3)

• Favorable angles (see Section 6.4)

• Fluidity (see Section 6.5)

The body joints representation and naming convention used in the remaining of this
chapter is illustrated in Fig 6.1.

6.2 Stability

In the practice of Taijiquan, the body must always remain stable during the motion,
in terms of balance, and balance variation. The trunk must remain vertical, and seg-
ments between symmetric joints must remain in the horizontal plane. The CoM must
be close to the pelvis, and above the support base. When a limb moves away from
the CoM, another one must be used in synchrony as a counterweight to maintain
balance, and reduce CoM effective quantity of motion. The heel kick technique is a
good example of this notion, as illustrated in Fig 6.2. During the gesture, arms move
in synchrony with the foot, and are used as counterweights for a better stability.

To evaluate stability, four features have been implemented:
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Figure 6.2: Heel kick technique. During the gesture, arms move in synchrony with
the foot, and are used as counterweights for a better stability. Reproduced from

Caulier (2010).

• Static stability: the static stability is evaluated by computing the Euclidean
distance between the components of the pelvis and the CoM in a horizontal
plane (x, y):

F1(t) =
√
(xpelvis(t)− xCoM(t))2 + (ypelvis(t)− yCoM(t))2 (6.1)

• Dynamic stability: the dynamic stability is computed as the time derivation of
the static stability:

F2(t) =
dF1(t)

dt
(6.2)

• Verticality: the verticality of the trunk is computed as the Euclidean distance
between the components of the pelvis and the neck in a horizontal plane (see
Fig 6.3 (a) ):

F3(t) =
√
(xpelvis(t)− xneck(t))

2 + (ypelvis(t)− yneck(t))
2 (6.3)

• Horizontality: the horizontality of the body is computed as the mean absolute
difference between the height (z) of main joint pairs (shoulders, hips and knees,
see Fig 6.3 (a) ):

F4(t) =
∑3

j

∣∣∣zLj(t)− zRj(t)
∣∣∣

3
(6.4)

where j stands for the joint index in L = {Lshoulder, Lhip, Lknee} and R =

{Rshoulder, Rhip, Rknee}.
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Figure 6.3: Visualization of some stability and alignment features inspired by Tai-
jiquan ergonomic principles. (a): F3 (verticality), F4 (horizontality) computed in the
horizontal plane, and F7 (vertical alignment of left hip and left ankle). (b): F11 (frontal
alignment of left shoulder and left wrist) and F19 (right elbow not behind body) com-

puted in the body frontal plane.
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Figure 6.4: Joint alignments in tree posture (Wuji). Reproduced from Caulier (2010).

6.3 Joint alignments

Joints must as often as possible remain aligned, vertically or horizontally. Fig 6.4
illustrates this notion. Joint alignments allow a better stability, but also a better
transmission of the forces from the ground to the body extremities.

To evaluate joint alignments, nine features have been proposed:

• Joints vertical alignments: computed as the Euclidean distance between the
horizontal components of two joints:

F4+j(t) =
√
(xUj(t)− xDj(t))

2 + (yUj(t)− yDj(t))
2 (6.5)

for U ={Lshoulder, Rshoulder, Lhip, Rhip, Lknee, Rknee} and
D ={Lhip, Rhip, Lankle, Rankle, L f oot, R f oot}.

• Shoulder-wrist frontal alignment: computed as the Euclidean distance between
the coordinates of the left (resp. right) wrist and the left (resp. right) shoulder
into the body frontal plane. At each time, the body frontal plane is defined
by three points placed on both hips (−→p1 and −→p2 ) and the neck (−→p3 ). A local
coordinate system (referred to as body frontal coordinate system below, see Fig 6.3



98 Taijiquan ergonomic principles: a new set of features

(b) ) is then defined using these points:1

−→v1 = −→p1 −−→p2 , −→u1 =
−→v1

||−→v1 ||
(6.6)

−→v3 = −→v1 × (−→p3 −−→p1 ),
−→u3 =

−→v3

||−→v3 ||
(6.7)

−→u2 = −→u3 ×−→u1 (6.8)

where × is the cross product, −→u1 , −→u2 and −→u3 are three orthonormal vectors: −→u1

and −→u2 are in the body frontal plane, and −→u3 is normal to the body frontal plane
(see Fig 6.3 (b) ). The origin of the body frontal coordinate system is defined as −→p1 .
The coordinates of a joint in the body frontal coordinate system are thus defined
as:

P = [−→u1
T −→u2

T −→u3
T] (6.9)

−→
f j = (−→pj −−→p1 ) · P (6.10)
−→̂
f j = (x f

j , y f
j , 0) (6.11)

where we replace the third coordinate (corresponding to −→u3 ) by 0. Finally, the
frontal alignment is computed as Euclidean distance between the components
of the shoulder and the wrist in the body frontal plane:

F11 =

∥∥∥∥−−−−−→f̂Lshoulder −
−−−→
f̂Lwrist

∥∥∥∥ (6.12)

F12 =

∥∥∥∥−−−−−→f̂Rshoulder −
−−−→
f̂Rwrist

∥∥∥∥ (6.13)

• Feet alignment: feet must often be parallel in Taijiquan. To assess this align-
ment, the absolute difference is computed between the Euclidean distance be-
tween heels and the Euclidean distance between toes:

F13 =
∣∣∥∥−−−→pLankle −−−−→pRankle

∥∥− ∥∥−−−→pL f oot −−−−→pR f oot
∥∥∣∣ (6.14)

6.4 Favorable angles

Each body joint has an optimal flexion, leading to both suppleness and robustness.
Joints must never be fully stretched nor too bent. An equilibrium must be found
between stretching and tenseness at any time of the motion. This notion is illustrated
in Fig 6.5. This property can be related to optimal muscle lengths allowing the
highest force production: the force production of a muscle is at its minimum when
it is fully stretched or tense, as shown in Fig 6.6 (Gordon et al., 1966).

1Note that the time variable t is not indicated for readability.
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Figure 6.5: Favorable joint angles in tree postures (Wuji). No joint is fully stretched
nor fully bent. Reproduced from (Caulier, 2010).

Figure 6.6: Length-tension relation of a sarcomere in a muscle fiber. Reproduced
from (Gordon et al., 1966).
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To evaluate favorable angles, eight features have been proposed:

• The shoulders must be low. To avoid useless tension and stiffness of the shoul-
ders, they must remain as low as possible during the gesture. To evaluate if the
shoulders are low, the angle between the shoulder, the neck and the thorax is
extracted. The angle between three joints j, k and l is calculated as:

−→vj,k =
−→pj −−→pk (6.15)

−→vl,k =
−→pl −−→pk (6.16)

̂(j, k, l) =
arccos(−→vj,k · −→vl,k)∥∥−→vj,k

∥∥× ∥∥−→vl,k
∥∥ (6.17)

The angles between shoulders, the neck and the thorax are obtained using eq.
6.17, leading to (see Fig 6.7):

F14 = ̂(Lshoulder, neck, thorax) (6.18)

F15 = ̂(Rshoulder, neck, thorax) (6.19)

• Elbow flexion deviation from optimal angle: elbow flexion angle should remain
approximately between 90° and 135°. To evaluate the quality of the elbow
flexion (computed as the angle between the wrist, the elbow and the shoulder),
the optimal angle is estimated as 112.5°, and the deviation from this angle is
calculated as (see Fig 6.7):

F16 =
∣∣∣112.5°− ̂(Lwrist, Lelbow, Lshoulder)

∣∣∣ (6.20)

F17 =
∣∣∣112.5°− ̂(Rwrist, Relbow, Rshoulder)

∣∣∣ (6.21)

• The elbows must not be behind the body. To evaluate if the elbow is behind the
body, the elbow z-coordinate in body frontal coordinate system is extracted (cf. eq.
6.10, see Fig 6.3):

F18 = z f
Lelbow (6.22)

F19 = z f
Relbow (6.23)

• The elbows must not be too low (against the body), nor too high. The optimal
abduction of the elbow (estimated as the angle between the elbow, the shoulder
and the hip) is about 67.5°, and the deviation from this angle is calculated as
(see Fig 6.7):

F20 =
∣∣∣67.5°− ̂(Lelbow, Lshoulder, Lhip)

∣∣∣ (6.24)

F21 =
∣∣∣67.5°− ̂(Relbow, Rshoulder, Rhip)

∣∣∣ (6.25)
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Figure 6.7: Some favorable angles, inspired by Taijiquan ergonomic principles.

6.5 Fluidity

During a gesture, the body must always be in motion, in order to keep a continuous
kinetic energy, to keep joints warm and supple. On the other hand, the motion must
remain smooth, avoiding jerks: jerky motions lead to more impact on the joints, and
more energy expenditure. To evaluate the fluidity of each limb (arms and legs) and
of the trunk, the normal speeds, accelerations and jerks of their CoMs are computed:

−−−→
SLimbj(t) =

d
−−−−−→
CoMLimbj(t)

dt
, F21+j(t) =

∥∥∥−−−→SLimbj(t)
∥∥∥ (6.26)

−−−→
ALimbj(t) =

d
−−−→
SLimbj(t)

dt
, F26+j(t) =

∥∥∥−−−→ALimbj(t)
∥∥∥ (6.27)

−−→
JLimbj(t) =

d
−−−→
ALimbj(t)

dt
, F31+j(t) =

∥∥∥−−→JLimbj(t)
∥∥∥ (6.28)

where
−−−→
SLimbj(t),

−−−→
ALimbj(t), and

−−→
JLimbj(t) are respectively the speed, acceleration and

jerk of the CoM of Limbj, in Limb = {Larm, Rarm, Lleg, Rleg, Trunk}.
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6.6 Summary and conclusion

In this chapter, a new feature set was presented, inspired by Taijiquan ergonomic
principles. This set of 36 features can be divided into four main types: stability, joint
alignments, favorable angles and fluidity features. A summary is provided in Table
6.1.

Although these features are inspired by Taijiquan specific rules, most of them are
generic and can be applied to other disciplines. However, according to the specific
discipline, some features are more relevant than others. Some gestures might require
specific alignments or joint angles. For instance, in a tennis serve, the tossing arm
is usually highly extended above the shoulder, and the striking arm is placed be-
hind the body during the preparation step, discrediting F18/F19 (elbow bot behind
the body) and F20/F21(elbow abduction around 67.5°). Nonetheless, to optimize the
gesture, experienced players will not exaggerate these positions. They will bend their
knees to avoid an exaggerate abduction of the tossing-arm elbow, and their body will
be in profile (i.e. not facing the court) to avoid a position of the striking-arm elbow
behind the body. In other words, it is assumed that most of these ergonomic features
must generally be respected, to the extent allowed by the specific constraints of the
gesture. For validation purpose, this feature set will be tested in Part III, either for
gesture evaluation (see Chapters 8 and 9), and for gesture feedback (see Chapter 10).
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Index Definition Computation

Stability
F1 Static stability Distance between the horizontal

projections of CoM and pelvis.
F2 Dynamic stability Time-derivation of static stability.
F3 Verticality Distance between the horizontal

projections of neck and pelvis.
F4 Horizontality Mean of vertical distances of joint pairs

(shoulders, hips, knees)
Alignments
F5/F6 Shoulder-hip vertical

alignment
Distance between the horizontal
projections of shoulder and hip.

F7/F8 Hip-ankle vertical alignment Distance between the horizontal
projections of hip and ankle.

F9/F10 Knee-foot vertical alignment Distance between the horizontal
projections of knee and foot.

F11/F12 Wrist-shoulder frontal
alignment

Distance between the frontal projections
of shoulder and wrist.

F13 Feet alignment Difference between length of segments
(Lankle− L f oot) and (Rankle− R f oot).

Favorable angles
F14/F15 Shoulders low Angle between shoulder, neck and

thorax.
F16/F17 Elbows optimal flexion Deviation from 112.5° of the angle

between wrist, elbow and shoulder.
F18/F19 Elbows not behind body Elbow z-coordinate in body frontal

coordinate system.
F20/F21 Elbows optimal abduction Deviation from 67.5° of the angle

between elbow, shoulder and hip.
Fluidity
F22 − F26 Limb speed Normal speed of limb CoM (arms, legs

and trunk).
F27 − F31 Limb acceleration Normal acceleration of limb CoM (arms,

legs and trunk).
F32 − F36 Limb jerk Normal jerk of limb CoM (arms, legs

and trunk).

Table 6.1: Features inspired by Taijiquan ergonomic principles.
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7.1 Introduction

The following is partly reproduced from Tits et al. (2017).

In Chapter 2, various features were presented, allowing a representation of different
aspects of motion. Chapter 6 presented a new feature set inspired by Taijiquan er-
gonomic principles, aiming for a relevant description of expertise in sports gestures.
More features means more information about the various aspects of motion, and
possibly about expertise. However, it also adds complexity in the data, due to the
possible noise, redundancy, as well as irrelevant information present in the features.
Motion features can indeed be influenced by many factors, including psychological,
social or physiological factors. As a consequence, these features are therefore not

105
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optimal for expertise modeling. To solve this issue, a common step in machine learn-
ing research is the use of feature selection techniques, allowing for the selection of a
subset of features keeping only the most relevant and reliable information regarding
the targeted task (in the present case, expertise modeling). The problem of feature
selection is that it discards all information contained in the non-selected features.
Another solution is to post-process the features, in order to reduce the influence of
some factors on them, and hence to improve the information related to the targeted
factor.

Morphology is a factor that has a direct influence on motion, making comparison
between gestures of different individuals difficult. For instance, during a kick gesture
the foot of a tall person will generally move higher than the foot of a short person.
On the contrary, if a particular height of the kick is aimed, then the hip angle of the
taller person will be smaller. In both cases, some features of both individuals will
be very different (either foot height, or hip angle), without any indication about the
quality of the performance, and making the comparison between gestures difficult.
In this sense, the information contained in any feature about morphology can be
considered as noise and should therefore be reduced as much as possible. Moreover,
this information is generally redundant as it is contained in many features.

To alleviate this issue, different motion data representations have been proposed. Sie
et al. (2014) proposed a simple skeleton scaling method, by placing the coordinate
system on a reference node of the body (i.e. on the pelvis), and dividing all nodes
coordinates by the torso height. Features can then be extracted on these scaled data.
This method was later used by Morel et al. (2016) for gesture evaluation. It has the
advantage of being very simple, but has many limitations. It is based on the sim-
plistic hypothesis that the movement of a short individual should be an homothety
of that of a tall individual. However, weight, height of the center of mass, shoulder
width and hip width, among others, may also influence movement in different ways
including inertia, balance, speed and power. These characteristics will be altered by
such a basic scaling.

As described in Chapter 2 (see Section 2.3.3), Müller et al. (2005) proposed a specific
feature set based on 40 binary relational features, originally developed for whole-
body motion classification and retrieval. These relations may for instance correspond
to a foot being raised, a hand being in front of the body, legs being crossed, etc. The
thresholds for the binary decisions are defined by different body segment lengths
such as the humerus length or the shoulder width, so that each feature is scaled by a
custom pre-defined body characteristic. However, this method is limited to this type
of feature, and does not allow the extraction of new features afterwards.

Kulpa et al. (2005) developed a morphology-invariant representation of motion, origi-
nally developed for animation, where they defined limbs with variable lengths. Each
limb (legs and arms) is defined by the position of its end-effector and by a plane
where the middle joint (knee and elbow) is located. The spine is represented as a
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Figure 7.1: Kulpa et al. (2005) method for morphology-invariant representation of
motion. Reproduced from Kulpa et al. (2005).

spline (see Fig 7.1). This representation allows reconstruction of the movement to
fit specific constraints. However, it does not fully store the actual movement, and it
modifies it to fit these constraints. It is relevant for animation and motion retrieval,
but is not suited for movement analysis, which can require details of the movement
that are lost in this representation.

In this Chapter, a new method is proposed for reducing the influence of morphology
on any motion feature. It estimates and removes the correlation between a feature
and a morphology factor, avoiding direct manipulation of the spatial skeleton data
that would alter other body characteristics. The estimated relationship is based on
a linear regression of individual means and standard deviations of features with a
morphological factor. The proposed method can be seen as a tuning of each feature,
independently removing the influence of morphology on each feature post-processed
through our method. It is also more general than the related work, as it could the-
oretically be used with any factor and on any feature, whereas the literature known
to the author is limited to body size.

7.2 Method

7.2.1 Morphology Independent Residual Feature Extraction (MIRFE)

The objective of the proposed method is to remove from the feature distribution the
component resulting from the influence of inter-individual factors such as morphol-
ogy. In order to assess the influence of a morphological factor on a feature, the
best linear combinations of this factor to approximate the statistics of the feature are
identified. For that purpose, constrained linear regression is used.

Let xn(t) be a temporal feature extracted from a motion sequence n ∈ {1, ..., N}, in
a dataset of N motion sequences. Let µ(n) = mean(xn(t)) and σ(n) = std(xn(t)) be
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respectively the mean and standard deviation of this feature over time. Both of these
statistics can be considered as non-temporal features.

Let m(n) be a variable corresponding to a morphological factor, known for each
motion sequence n. For each statistic (µ, σ), a linear regression is performed with the
regressor m, leading to the following predictive equations:

µpred(n) = β0,µ + β1,µ ·m(n) (7.1)

σpred(n) = β0,σ + β1,σ ·m(n) (7.2)

where β0µ, f and β1µ, f (resp. β0σ, f and β1σ, f ) are the intercept and slope of the linear
regression of means µ f (resp. individual standard deviations σf ).

To ensure positive (and hence physically meaningful) predictions for the standard
deviation (σpred) , the slope parameter (β1,σ ) is constrained:

nmin = argminn(σpred(n)), n ∈ {1, ..., N}

i f σpred(nmin) < 0 : β1,σ =
−β0,σ

m(nmin)
+ ε (7.3)

where ε is a small positive number (arbitrarily defined as 0.0001 in our work). If the
lowest value of σpred is negative, the application of the constraint on β1,σ defined in
Eq. 7.3 to Eq. 7.2 leads to:

σpred(nmin) = β0,σ + (
−β0,σ

m(nmin)
+ ε) ·m(nmin) = ε (7.4)

The method is then based on the hypothesis that the prediction of the linear regres-
sion is the part of the statistic that can be fully described by the factor, while the
residue is the uncorrelated part of the statistic, i.e. the part that is not influenced by
the morphological factor. The residues µres and σres of the predictions are expressed
as:

µres(n) = µ(n)− µpred(n) (7.5)

σres(n) =
σ(n)

σpred(n)
(7.6)

The following equation is then used to compute a version of the feature xn corre-
sponding to these residual statistics, where the influence of morphology has been
removed:

xres,n =
(xn − µ(n))

σ(n)
· σres(n) + µres(n) (7.7)
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Eq. 7.7 can be interpreted as follows: for each motion sequence, the feature xn is
first standardized to remove its initial mean (µ(n)) and standard deviation (σ(n)),
and then scaled and translated so that its mean and standard deviation correspond
to µres(n) and σres(n).

Figure 7.2 illustrates the extraction of such residues, on an example dataset consisting
of six motion sequences (N = 6), each one from a different participant. This number
was arbitrarily used for illustration, although a larger number of participants should
be recorded to avoid overfitting of the linear regression. The first graph (a) displays
a dummy feature for the 6 sequences, with means and standard deviations (µ and σ)
for each sequence. The second graph (b) shows the morphological factor m, repre-
senting in this example the size of the participant for each sequence. The third and
fourth graphs (c and d) respectively show the results of linear regression of µ and
σ with the regressor m. The blue curve is the regressand (µ or σ), the red curve is
the prediction (Eq. 7.1 and 7.2), and the green curve is the residue (Eq. 7.5 and 7.6).
The final graph (e) then displays the result of the residual feature extraction, where
means (µres) and standard deviations (σres) are now independent of the morphology
(Eq. 7.7).

When the residual features are extracted, a correlation analysis can be performed
with the factor of interest, e.g. skill. As skill is supposedly not correlated to mor-
phology, it is assumed that the process will not decrease the correlation between
features and skill, but on the contrary, could increase it. Moreover, as the same infor-
mation is removed from the features, their redundancy should decrease, allowing a
more efficient use in machine-learning based modeling in general.

If the features were standardized before the process, they should be standardized
again afterwards, as the overall mean and standard deviation may have changed. In
the remainder of the paper, our method will be referred to as Morphology Independent
Residual Feature Extraction or MIRFE.

7.2.2 Experiments

The goal of the MIRFE method is to reduce the influence of the morphology on
motion features, while preserving information about other independent factors (i.e.
expertise in the present research). To verify the effectiveness of the method, the
relation between features and factors can be analyzed, with or without the use of
this method, and results can be compared with a baseline method, i.e. skeleton
data scaling (Sie et al., 2014). In the skeleton scaling, all global joint coordinates are
divided by the size of the individual before feature extraction. As a benchmark, the
eight Bafa techniques of the Taijiquan dataset presented in Chapter 4 are used (see
Table 4.3). Different types of features are extracted from this dataset, including:
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Figure 7.2: Inter-individual factor independent residual feature extraction. (a): fea-
ture and statistics (µ and σ). (b): individual morphology (size). (c) and (d): linear
regression of means and standard deviations. The blue curve is the regressand (µ or
σ), the red curve is the prediction (Eq. 7.1 and 7.2), and the green curve is the residue

(Eq. 7.5 and 7.6). (e): residual feature extraction (Eq. 7.7).
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1. Joint 3D global coordinates (reference placed on the hips) (F = 61)1

2. Joint 3D local coordinates (reference placed on each parent joint) (F = 53)2

3. Joint global quaternions (reference placed on the hips) (F = 64)3

4. Joint local quaternions (reference placed on each parent joint) (F = 64)

5. Continuous relational features (Müller feature set without thresholding, see
Section 2.3.3) (F = 40)

6. Ergonomic features (F = 93), including :

• ROM (in degrees, see Table 2.1) (F = 32)

• Joint perceived discomfort (see Section 2.3.6.4) (F = 14)4

• CoM kinematics (including CoM 3D coordinates, 3D speeds, 3D accelera-
tions, as well as normal speed and acceleration) (F = 11)

• Taijiquan ergonomic principles (see Chapter 6) (F = 36)

The entire feature set hence comprises F = 375 features.

To analyze the relations between features statistics (µ and σ) and factors (morphology
m and skill s), absolute correlation will be used:

Φa,b = |R(a, b)| (7.8)

where R(a, b) ∈ [−1, 1] denotes the correlation between a statistic variable a and a
factor variable b, and Φa,b ∈ [0, 1] denotes their absolute correlation. The mean of the
absolute correlations (Φa,b) for the feature sets will then be extracted and compared
according to the method used, i.e. (i) without processing, (ii) with skeleton scaling
and (iii) with MIRFE.

Not only the removal of morphology influence could allow for a improvement of the
relation with other factors, but it could also reduce the redundancy of the features,
as the same redundant information is removed from them. To analyze the redun-
dancy of the motion features in a feature set, the mean of their absolute pairwise
correlations will be computed, and will be denoted as Φ f (and referred to below as
redundancy), where the index f ∈ (1, ..., 6) stands for the identifier of the feature type
in the above list.

13D coordinates of 21 joints (pelvis, thorax, neck, back head and forehead, both shoulders, elbows,
wrists, hands, hips, knees, ankles, feet) but due to the placement of the reference on the hips, the
x-coordinates of both hips are always zeros, leading to only 61 useful features.

253 non-zero features from 3D coordinates of 21 joints.
3Quaternions of 16 segments: head, thorax, both arms, forearms, hands, hips, thighs, calves, feet.
4Perceived discomfort extracted for 14 joints: neck, pelvis, both shoulders, elbows, wrists, hips,

knees and ankles.
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7.2.3 Factor definition

Morphology can be defined with numerous variables tightly linked together, such
as the size or weight of each body segment. To extract the most relevant variable
to represent morphology, a PCA was performed on several variables, including in-
dividual segment lengths (foot, calf, leg, trunk, arm, forearm, hand and head), hip
width, shoulder width, size from feet to head, and size from feet to fingers.

The first principal component alone explained 76% of the data variance, and it was
almost equivalent to the size from feet to fingers (R = 0.9932, p = 1.15× 10−15). As
a consequence, the size from feet to fingers is chosen as the morphology factor m
for the experiment. The use of only one variable to represent morphology limits the
complexity of the regression model, and thus the risks of overfitting due to the small
number of individuals in the benchmark dataset (I = 12).

The skill factor s in the gesture will be estimated as the mean level of the individual’s
skill as annotated by the experts (see Table 4.1, last column). To verify the indepen-
dence of both factors (m and s), their correlation was computed for the 12 participants
of the benchmark dataset, resulting in R = −0.03 (p = 0.92).

7.3 Results

7.3.1 Validation on the eight Bafa techniques

To test the effectiveness of MIRFE in various situations, this section presents a cor-
relation analysis of feature statistics and individual factors for various gestures (the
eight Bafa techniques) extracted from the Taijiquan MoCap dataset. For each feature,
absolute correlations of individual statistics (µ and σ) with morphology (m) and
with skill (s) were computed, without processing, after scaling, and after MIRFE. The
mean of these absolute correlations was then extracted for all features. Results are
displayed in Fig 7.3.

The upper graphs (a and b) show the mean absolute correlations of m with features
statistics (µ on the left graph and σ on the right graph). Without any processing,
Φm,µ averages to 0.28 for all the analyzed features and techniques, and Φm,σ averages
to 0.22. It can be observed that the baseline, i.e. the scaling method only partially
reduces the correlation between feature statistics and morphology (Φm,µ = 0.22 and
Φm,σ = 0.19), whereas MIRFE removes it almost completely. With MIRFE, the ab-
solute correlation with m is null for all features and for each technique (Φm,µ = 0),
and Φm,σ averages to 0.018 for all features and techniques. As the results are similar
for the eight Bafa techniques, it seems therefore that MIRFE allows for an efficient
removal of the morphology influence on the features, independently of the type of
motion.
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Figure 7.3: Absolute correlation analysis between feature statistics and motion fac-
tors, for the eight Taijiquan Bafa techniques: (a) morphology and features means; (b)
morphology and features standard deviations; (c) skill and features means: (d) skill

and features standard deviations.

The lower graphs, c and d in Fig 7.3, respectively show the mean absolute correla-
tions of the participant skill s with features statistics µ and σ. It can be seen that for
each technique, MIRFE yields the best results. Concerning Φs,µ, the use of MIRFE
significantly increases the mean absolute correlation with s by [.0017− 0.025] for the
eight Bafa techniques.5 Concerning Φs,σ, the use of MIRFE leads to a significant im-
provement for all techniques except the first two (’Drive the monkey away’ and ’Move
hands like clouds’), up to 0.012 for the last technique (’Grasp the bird’s tail’). On the
opposite, no significant improvement could be observed for the baseline method,
both for Φs,µ and Φs,σ.

5A significant difference between Φs,µ with and without MIRFE is assumed if the p-value of the
Student’s t-test on their difference for all features respects the condition: p < 0.005.
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7.3.2 Feature set correlation analysis

In Section 7.3.1, the effectiveness of MIRFE was demonstrated for various types of
gestures from the Taijiquan dataset. In this section, factor effects are analyzed for
various feature types, without processing, with skeleton scaling and after MIRFE
post-processing.

Fig 7.4 shows the mean absolute correlations computed on each feature set (see Sec-
tion 7.2.2) for the eight Bafa techniques. Without any processing, global and local
joint coordinates seem to be the most related to morphology (Φm,µ = 0.40 for global
coordinates and Φm,µ = 0.43 for local coordinates). As already seen in Section 7.3.1,
the use of MIRFE allows an effective removal of the correlation of feature statistics
with m, while skeleton scaling only reduces it partly for some features (see Graphs
(a) and (b) in Fig 7.4).

Graphs (c) and (d) respectively display the relations between feature statistics (µ on
the left graph and σ on the right graph) and skill (s). It can be observed that for
any type of feature, the use of MIRFE leads to a significant improvement of their
correlation with s by [0.01− 0.04] for Φm,µ, and by [0.004− 0.013] for Φm,σ (except
for relational and ergonomics features). On the opposite, skeleton scaling yields
significant improvement only for Φm,µ on global positions (improvement of 0.02) and
on relational features (improvement of 0.018).

From these graphs, it seems that after the process with MIRFE the joint 3D global
coordinates are the most linearly related features with s. However, it does not indi-
cate that they provide the best description of skill, as joint global coordinates may
also be highly redundant. To analyze the redundancy within the feature sets, ab-
solute pairwise correlations were computed for each feature set (Φ f ), as illustrated
in Fig 7.5. It can be observed in this figure the use of MIRFE significantly reduces
the redundancy of the features for all the feature sets by [0.035− 0.071], except for
local quaternions. On the opposite, skeleton scaling reduces the redundancy only
for the joint local coordinates. It can also be observed from this graph that global
coordinates are the most redundant features in every case. Their pairwise absolute
correlations average to Φ1 = 0.27 without processing and with skeleton scaling, and
are decreased to Φ1 = 0.23 after MIRFE.

7.4 Discussion

The results show that our MIRFE method allows to remove almost completely the
morphological influence on the features (at least for one morphological factor). More-
over, it seems that, by removing morphology influence, the redundancy between the
features is decreased, and that their relations with other factors such as skill can be
improved. This method could be used to improve the analysis of the influence of
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Figure 7.4: Absolute correlation analysis between feature statistics and motion fac-
tors, for each feature type: (a) morphology and features means; (b) morphology and
features standard deviations; (c) skill and features means: (d) skill and features stan-

dard deviations. The indices of feature type correspond to the list in Section 7.2.2.
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Figure 7.5: Absolute pairwise correlations between features, for each type of feature,
without processing, after skeleton scaling, and after MIRFE). The indices of feature

type correspond to the list in Section 7.2.2.

inter-individual factors other than skill on movement, such as expression, fatigue,
illness, age, etc. Unlike skeleton scaling, MIRFE could easily be used with any mor-
phological factor, such as weight, hip width or shoulder stature, in order to reduce
their influence on motion. Moreover, factor-independent residual feature extraction
could also be generalized for reducing unwanted influence of other factors, such as
age or sex. However, morphology has a direct influence on motion and is thus more
appropriate in our case.

Another drawback of direct skeleton data manipulation, such as basic scaling or
skeleton representation adaptation, is that they only consider spatial variability due
to morphology. In fact, motion is a spatiotemporal series, and morphology may also
have an influence on time, because of body inertia for instance. As MIRFE can be
applied to any feature, it can also be used on kinematic or kinetic features, and hence
reduce morphology influence on their variability.

MIRFE is based on simple linear regression, but could be generalized to non-linear
regression, or multiple regression using several morphological or non-morphological
factors as predictors. It could theoretically model multiple relations and interac-
tions between feature statistics and motion factors. However, a more complex model
would probably need a larger dataset than the one used in this study. As a reminder,
the dataset includes only 12 different participants, i.e. 12 unique values for each
factor variable. This study of a more complex model is thus left as an improvement
prospect.
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7.5 Conclusion

In this Chapter, an original method was proposed for extraction of morphology-
independent features (MIRFE). This method is based on constrained linear regression
with a morphological factor on features statistics (means and standard deviations).
The residues of these regressions allow for the computation of residual features,
independent of the morphology. Results showed that MIRFE efficiently removes the
influence of morphology and improves the relation with the participant skill. MIRFE
outperforms skeleton scaling both for morphology independence and skill relation
improvement. Its effectiveness will be further tested in various gesture evaluation
models presented in the following chapters (see Chapters 8 and 9). MIRFE also has as
advantage that it could be used with any inter-individual factor, and on any feature.
MIRFE could also be adapted with more complex models than linear regression, but
would probably require a larger dataset in that case.
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8.1 Introduction

This third part of the present thesis focuses on the evaluation of the expertise within a
gesture. In the following chapters, several models will be proposed and tested. As a
reminder, previous works concerning gesture evaluation are presented and discussed
in Chapter 3. All these studies proposed an original method generally using a single
type of motion features, and tested it on a specific motion capture dataset generally
consisting of a single gesture type. Moreover, these methods were rarely compared,
as their code was generally not provided for reproducibility, and because of the lack
of any available benchmark dataset.
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This chapter presents a model based on feature statistics and classical machine learn-
ing for evaluating the expertise within a gesture. In the taxonomy presented in
Chapter 3, the proposed method can be ranked as a “score prediction” method (see
Section 3.4.3), based on a regression model. The regression is performed on Principal
Components (PCs) extracted on means and standard deviations over time of a large
set of motion features. The originality of the proposed method essentially resides in
(i) the variety of features that can be used as input, allowing the combination of dif-
ferent types of features, and (ii) the feature post-processing step (MIRFE, see Chapter
7). In this chapter, the proposed method will be tested with various feature combi-
nations, and with different regression models. The use of MIRFE will be assessed,
using the proposed evaluation model as a validation procedure. In the next chapters,
two original exploratory studies will be presented, proposing a gesture evaluation
model based on deep learning (see Chapter 9), and an original and generic visual
feedback method (see Chapter 10).

8.2 Methods

8.2.1 Model design

Fig 8.1 illustrates the general workflow of the proposed gesture evaluation model. A
set of motion features is provided as the input of the workflow, containing N sam-
ples (for N sequences of the same gesture), and F temporal features (extracted from
the corresponding motion sequences). Any type of temporal feature can be used,
including both low-level or high-level motion representations. From these features,
statistics are extracted for each sample, including the mean (µ) and the standard de-
viation (σ) over time, leading to 2× F variables. A PCA is then performed on these
variables, allowing a reduction of the number of variables while keeping the largest
variance possible. Finally, a regression model is used on the extracted PCs to predict
the skill level of the participant. The proposed workflow is generic, in the sense that
it can be used with any number and type of motion features, and with any regression
model.

8.2.2 Experiment

The proposed model will be evaluated using various sets of features. The efficiency of
the feature post-processing step with MIRFE will also be evaluated. As a benchmark,
the eight Bafa techniques of the Taijiquan dataset presented in Chapter 4 will be
used (see Table 4.3). Six different types of features will be used in this experiment,
including:
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Figure 8.1: Generic workflow of the statistical-based gesture evaluation model.

1. Joint 3D global coordinates (reference placed on the hips) (F = 61)1

2. Joint 3D local coordinates (reference placed on each parent joint) (F = 53)2

3. Joint global quaternions (reference placed on the hips) (F = 64)3

4. Joint local quaternions (reference placed on each parent joint) (F = 64)

5. Continuous relational features (Müller feature set without thresholding, see
Section 2.3.3) (F = 40)

6. Ergonomic features (including 32 ROM from Table 2.1, 36 Taijiquan ergonomic
principles from Table 6.1, and 11 CoM kinematic features) (F = 79)4

These categories of features will be used separately as well as in combination, in
order to determine which combination provides the best description of expertise.
Finally, various commonly used regression models will be tested, including:

• Linear regression

• Elastic Net regularized linear regression (EN) (Zou and Hastie, 2005)

• Linear Support Vector Regression (L-SVR) (Drucker et al., 1997)

• Gaussian Support Vector Regression (G-SVR) (Aizerman, 1964; Smola and Schölkopf,
2004)

13D coordinates of 21 joints (pelvis, thorax, neck, back head and forehead, both shoulders, elbows,
wrists, hands, hips, knees, ankles, feet) but due to the placement of the reference on the hips, the
x-coordinates of both hips are always zeros, leading to only 61 useful features.

253 non-zero features from 3D coordinates of 21 joints.
3Quaternions of 16 segments: head, thorax, both arms, forearms, hands, hips, thighs, calves, feet.
4The CoM kinematic features include its 3D coordinates, 3D speeds, 3D accelerations, as well as its

normal speed and acceleration.
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• Generalized Regression Neural Network (GRNN) (Specht, 1991)

• Multi-Layer Perceptron (MLP) (2 hidden layers with 2 neurons each, trained for
20 epochs) (Rumelhart et al., 1985)

• A tree ensemble using Least Square Boosting (LSB) (20 trees) (Friedman, 2001)

For each test configuration, including various feature types and various regression
models, the following procedure will be used: for each Bafa technique, a gesture
evaluation model will be tested, following a leave-one-participant-out (LOPO) cross-
validation procedure. It means that to test the model efficiency on one participant
(the left-out participant), the model will be trained on the other eleven participants,
and used to predict the skill level of the left-out participant. Finally, by gathering all
the predictions (N = 1660 for the 8 Bafa techniques and the 12 participants of the
dataset), the Pearson’s correlation (R) with the reference skill level (the annotation)
will be extracted, as well as the mean absolute error (ε) of the prediction.

8.2.3 Comparison with related work

Two methods presented in the recent literature will be compared to the proposed
method:

• The first method is using eigenmovement decomposition. Eigenmovements
have been used to evaluate the skill in various motion disciplines, as presented
in Chapter 3. The method used in this work is similar to Young and Reinkens-
meyer (2014) and Zago et al. (2016) (see Section 3.4.3). The first eigenmovement
were extracted for each sequence, and a linear regression model was trained on
their weights to predict the participant skill.

• The second method is the spatial error computation method from Morel et al.
(2017) (see Section 3.4.2). On motion sequences temporally aligned with DTW,
a spatial error was computed for each limb (both arms, both legs and trunk).
As this score is computed frame-by-frame, the mean over time was extracted,
leading to a total of five variables (the mean spatial error for each limb). A linear
regression was then used with these five variables to predict the participant
skill.

8.3 Results

8.3.1 Feature comparison

This section presents a comparison of the effectiveness of various feature types for the
modeling of expertise with the proposed model. In this experiment, linear regression
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is used, and is tested with various numbers of PCs. The MIRFE post-processing step
is not used yet, in order to analyze the initial representation power of each feature
set.

Fig 8.2 (a) shows the results for the prediction of the participant skill level for the
eight Bafa techniques. Among the six compared features, the best results were ob-
tained with the ergonomic features, leading to a correlation of R = 0.73, using only
the first two PCs as predicting variables. Based on the assumption that the most di-
versified feature set would allow the best modeling of expertise, a larger feature set
was used by combining global positions, local quaternions, relational and ergonomic
features. This feature set led to even better results with a correlation of R = 0.79 with
two PCs as predicting variables. With this configuration, the participant level can be
predicted with a mean absolute error of ε = 0.72, for all participants and the eight
Bafa techniques.

Fig 8.2 (b) shows the variance accumulated by the PCs extracted from each feature
set. All curves seem similar, except for the relational features, where the first PCs
accumulate more variance. This is probably due to the fact that this feature set is
smaller than others (F = 2 ∗ 40 for µ and σ).

The best results were obtained with only two PCs, corresponding to 40% of the total
cumulated variance for the relational features and 30% for the combined feature set.
The correlation then generally decreases while the number of PCs increases for most
feature sets. The remaining information is either not relevant for the modeling of
expertise or is not properly interpreted by the modeling algorithm (linear regression
in this case).

The previous chapter analyzed the impact of MIRFE on the feature correlation with
skill. In the next section, models will be trained with features post-processed using
MIRFE, allowing an analysis of its real interest in the modeling of expertise.

8.3.2 MIRFE validation

In this section, the same comparison as in Section 8.3.1 is proposed.Various features
types are tested for the modeling of expertise with the proposed model, used with
linear regression and various numbers of PCs. However, in this case, the MIRFE post-
processing step is applied on the features, allowing a comparison with the previous
results.

Fig 8.3 shows the results for the prediction of the participant skill level for the eight
Bafa techniques. It can be observed in the left graph (a) that results include several
differences with the ones presented above (see Fig 8.2 (a)). Firstly, for most feature
sets the correlation seems to increase with the number of PCs used as predicting
variables, up to about 45 PCs, corresponding to 99% of the cumulated variance for
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Figure 8.2: Participant skill prediction using linear regression on PCs extracted on
various features sets (no MIRFE post-processing).

Figure 8.3: Participant skill prediction using linear regression on PCs extracted on
various features sets, after MIRFE post-processing.

relational features and 94% for the combined feature set. Secondly, the best results
are not obtained with high-level features nor with the combined feature set, but with
the global positions (R = 0.88 with 45 PCs). With this configuration, the participant
level could be predicted with a mean absolute error of ε = 0.52, for all participants
and the eight Bafa techniques.

8.3.3 Model comparison

In this section, various commonly used regression models are compared for the mod-
eling of the expertise. Each regression model is tested with various feature types and
with various number of PCs extracted on features processed with MIRFE. Table 8.1
presents the best results for each regression model. The parameters of each model
were optimized for the eight Bafa techniques dataset. Best results were obtained with
the three linear models (EN, L-SVR, linear regression), with 60 PCs extracted from
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Model Feature types Npcs R
Linear regression 1+5 60 0.904
EN 1+5 60 0.909
L-SVR 1+5 60 0.890
G-SVR 1+4+5+6 1 0.789
MLP 1+4+5+6 1 0.788
LSB 1+4+5+6 1 0.769
GRNN 1+4+5+6 1 0.800

Table 8.1: Participant skill prediction using various regression models: best results.
The numbers used to identify the features correspond to the list presented in Sec-

tion 8.2.2.

global positions and relational features. For these three models, the correlation with
annotations generally increased with the number of PCs until 60 PCs (similarly to
Fig 8.3 (a) ), up to R = 0.909 for EN5. A clear gap can be observed with non-linear
models (G-SVR, MLP, LSB and GRNN). With all these models, the correlation with
annotations decreased with the number of PCs. For these models, the best results
were obtained with a single PC on the large feature set combining global positions,
local quaternions, relational and ergonomic features.

8.3.4 Comparison with related work

Table 8.2 shows the results for two methods from the related work: eigenmovements,
and limb spatial errors from Morel et al. (2017). These methods were used on features
that were either extracted on a scaled skeleton, or post-processed with MIRFE. These
results are compared with the best results obtained for the method proposed in this
chapter. For both methods, the feature post-processing with MIRFE leads to better
predictions. The score regression with limb spatial error leads to the worst correlation
(R = 0.425 using MIRFE). Regression with 60 eigenmovement weights leads to a
correlation of R = 0.849. The proposed method outperforms both methods, with
R = 0.909.

8.3.5 Synthesis

From all the tested models, the best results (of R = 0.909) were obtained for a model
based on:

• A feature set combining global positions and relational features

5With optimal parameters, the EN corresponded to a L2-regularization with a regularization param-
eter α = 0.0017
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Method Nvariables R
Eigenmovement weights (with scaling) 10 0.709
Eigenmovement weights (with MIRFE) 60 0.849
Morel et al. (2017) limb spatial error
(with scaling)

(5) 0.319

Morel et al. (2017) limb spatial error
(with MIRFE)

(5) 0.425

Proposed method (EN-regression on 60
PCs extracted from statistics (µ and σ) of
global positions and relational features,
with MIRFE)

60 0.909

Table 8.2: Participant skill prediction using two methods from the literature.

• A feature post-processing step using MIRFE

• The extraction of 60 PCs from the feature means and standard deviations

• An EN-regularized linear regression model

Fig 8.4 shows the predictions for all the samples of the dataset including the eight
Bafa techniques. The smallest correlation was obtained for the gesture G11 (’Kick
with the heel’), with R = 0.828, and the largest one was obtained for G06 (’Drive the
monkey away’) and G13 (’Grasp the bird’s tail’), with R = 0.953. The mean absolute
error of all the predictions is ε = 0.424.

8.4 Discussion

In this chapter, various skill evaluation methods were tested and compared with two
methods of the literature. The best results were obtained with the proposed method,
configured with an EN-regression model, and using a combination of low-level fea-
tures (global positions) and higher-level features (relational features), with a corre-
lation of R = 0.909, and a mean absolute error of ε = 0.473. The proposed method
outperformed two methods from the literature, including regression on eigenmove-
ment weights (Young and Reinkensmeyer, 2014), and regression on spatial errors
(Morel et al., 2017).

Two major advantages of the proposed method may explain these results: first, it
can be used with any type of feature, and the PCA allows extraction of a compact
representation while including various information due to the different types of fea-
tures used. The combination of global positions with relational features, providing
a higher-level representation of motion, allowed the extraction of the most relevant
PCs for the description of skill in the present study.
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Figure 8.4: Score predictions for the eight Bafa techniques. Model: EN-regression on
60 PCs from µ and σ of global positions and relational features, post-processed with

MIRFE.
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Secondly, another possible advantage of the proposed method is that it is based on
the comparison of statistics extracted from the gestures. On the opposite, eigenmove-
ments and spatial errors are based on frame-by-frame relations between gestures.
This type of comparison is thus highly sensitive to the temporal synchronization of
the gestures to compare. Though temporal alignment methods such as DTW can be
used to deal with synchronization, they only allow a global alignment of the motion
sequence, and do not ensure an optimal alignment of each marker position or each
feature independently. Moreover, they alter the original gestures and do not ensure
that the aligned movement still corresponds to the same skill level as the original.

Nevertheless, frame-by-frame relations could be relevant for other disciplines where
the timing of different motion features in a gesture is particularly important. In that
case, a statistical representation of the features would be inappropriate.

Another limitation arises from this same characteristic of the proposed model: as the
skill is evaluated from statistics extracted on the entire motion sequence, a score can
only be predicted for the entire motion sequence. On the contrary, a method based
on frame-by-frame comparison such as Morel et al. (2017) provides a spatial error for
each frame of the gesture. A frame-by-frame score allows feedback information on
which part of the sequence was performed more or less efficiently. Nonetheless, a
new generic feedback method is presented in Chapter 10, allowing wider feedback
information, independently of the gesture evaluation model.

For each model tested in this chapter, the feature post-processing with MIRFE led to
significantly better score predictions. With MIRFE, the quality of the model seems to
increase with the number of PCs (see Fig 8.3). As a comparison, without MIRFE, the
best results are obtained for one or two PCs for any feature set, as illustrated in Fig
8.2. It seems therefore that MIRFE allows the extraction of features that are easier to
interpret by the proposed models. The same observation was made for two methods
of the related work (see Table 8.2). It is probably due to the fact that the processed
features are less dependent on morphology and are thus more comparable between
participants, but also less correlated between each other.

These results can be compared to the differences between teachers’ annotations (see
Table 4.1). Tables 8.3 and 8.4 respectively show the correlations and mean abso-
lute differences between these annotations. The largest difference is observed for
Skill1 and Skill3 with a correlation of R = 0.949 and a mean absolute difference of
ε = 0.392. The variability of the annotations enlightens some subjectivity in the
teachers’ perception of each participant’s skills. As the model is trained to predict
these annotations, the results are limited to the teachers’ own perception of exper-
tise. The prediction results (R = 0.909 and ε = 0.473) should hence be compared to
annotation variability (represented by R = 0.949 and ε = 0.392).

Besides this annotation variability due to teachers’ subjectivity, the performer’s own
variability must also be highlighted: each rendition of a gesture can be performed by
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R Skill1 Skill2 Skill3 Experience
Skill1 1 0.972 0.949 0.831
Skill2 0.972 1 0.963 0.854
Skill3 0.949 0.963 1 0.934

Experience 0.831 0.854 0.934 1

Table 8.3: Correlations of the annotations of the three teachers with each other and
with participant experiences (years of practice).

ε Skill1 Skill2 Skill3
Skill1 0 0.275 0.392
Skill2 0.275 0 0.358
Skill3 0.392 0.358 0

Table 8.4: Mean absolute difference between the annotations of the three teachers.

the same performer with a different quality. For instance, athletes never throw a disk
at the same distance nor jump over the same distance in two consecutive attempts.
This variability can be due to various factors, including the performer’s fatigue or
concentration. To assess this variability in this dataset, the first teacher was asked to
annotate every rendition of the ’Kick with the heel’ gesture (G11) for each participant.
On these annotations, the mean absolute difference to the average annotation of each
participant was calculated, resulting in εrendition = 0.402. According to the teacher,
G11 is the most difficult technique. It requires more balance, accuracy and synchro-
nization than others, probably leading to more variability between renditions.

Finally, the same target variable (the global participant level) was used to model
the skill for each technique. However, each participant can master some techniques
better than others. This leads to another type of skill variability that is not learned
by the model.

A higher prediction accuracy could hence be obtained with individual annotations
for each rendition, or at least for each type of gesture. However, such an annotation
would require an extensive work, and would still be limited to the annotators’ sub-
jectivity. The use of global scores for each participant is a simplifying assumption,
which still leads to interesting results (R = 0.909 and ε = 0.473). In other words, the
global participant level can be predicted with a relative error (εrel) of 10.28%:

εrel =
ε

(max(Skillµ)−min(Skillµ))
=

0.473
9.57− 4.97

= 0.1028 (8.1)

8.5 Conclusion

In this chapter, a new gesture evaluation method was presented. The method is pre-
sented as a generic model which can be used with various types of motion features,
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and any type of regression algorithm. From motion features post-processed with
MIRFE, means and standard deviations are extracted for each gesture of the dataset.
PCA is applied on the means and standard deviations, allowing a dimensionality
reduction to a smaller set of PCs. A regression model is then used on these PCs
to predict the skill level annotated by experts. The proposed model was tested on
the eight-Bafa techniques dataset, leading to a correlation of R = 0.909 with the best
configuration, i.e. with global positions and relational features post-processed with
MIRFE, 60 PCs , and EN-regression (actually corresponding to a ridge regression
with a L2-regularization parameter of α = 0.017). The proposed method outper-
formed other methods from the literature, including regression on eigenmovement
weights (Young and Reinkensmeyer, 2014), and regression on spatial errors (Morel
et al., 2017). Results show a significant effect of the MIRFE processing method pre-
sented in Chapter 7. This post-processing step allows better interpretation of the
features by all of the models tested in this chapter, including methods from the re-
lated work. The results are limited to the subjectivity of the annotations provided by
the teachers, and better prediction could be obtained if annotations were provided
by a larger number of experts for each sample of the dataset.
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Towards a deep-learning-based
gesture evaluation model
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9.1 Introduction

In the previous chapter, we presented a statistical-based gesture evaluation method
using classical machine learning algorithms (PCA and EN-regression). Recent de-
velopments in machine learning include Deep Neural Networks (DNN), and more
particularly Convolutional Neural Networks (CNN), originally designed for image
analysis. These techniques dramatically outperform classical machine learning in
more and more disciplines including speech processing, image processing, and many
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other domains (LeCun et al., 2015). This type of model has recently been successfully
adapted in Laraba et al. (2017) for gesture recognition in MoCap data. The following
subsections briefly explain the basics of deep learning, which are necessary to under-
stand the method proposed in Laraba et al. (2017). An adaptation of this method is
then proposed in Section 9.2, and serves as a first proof-of-concept in the exploration
of the use of deep learning in gesture evaluation.

9.1.1 Neural network

A Neural Network (NN) is a machine learning system, consisting of connections
between learning units, trained together with a dataset to learn a task such as regres-
sion or classification. The basic unit of a NN, the neuron, is a non-linear function
(usually a logistic sigmoid), called the activation function linking a set of input vari-
ables with an output variable. A common type of NN is the Multilayer Perceptron
(MLP), or feedforward NN (see Fig 9.1). In this type of network, layers of neurons
are connected in series. If neurons or hidden layers are added to the network, it
allows modeling of more complex relations between the input variables (x) and the
output variable (y). However, it also adds a large number of parameters (weights
w), increasing the risk of overfitting or convergence failing. A larger dataset is then
needed to train the network efficiently.

A NN is trained by minimizing a cost function defined by the prediction errors
of the training set. This optimization procedure is generally performed using the
backpropagation technique. With this technique, the prediction error is computed at
the output and distributed back to the previous layers. An iterative gradient-descent
with a specified step size (called the learning rate) is used to reach a local minimum
of the cost function. This procedure can be performed either with a batch process,
using the entire training set at each iteration for computing the gradient, or with a
mini-batch process, using smaller sets of training samples at each iteration, generally
allowing a faster convergence to a local minimum with an adapted learning rate.
The mini-batch process is also called stochastic gradient descent (SGD) as the gradient
computed with the fewer training samples can be seen as a noisy estimation of the
gradient computed on the entire training set (LeCun et al., 2015).

A simple DNN can be defined as a NN with a large number of layers. As the number
of layers (and hence complexity) increases, the convergence of the model is harder
to reach. Due to the almost horizontal shape of the sigmoid function at its tails,
the gradient is close to zero, and eventually becomes zero through backpropagation
into several layers, due to computer limited floating-point precision. To deal with
the vanishing gradient, different activation functions have been used, such as the
Rectified Linear Unit (ReLU, Glorot et al. 2011), following the equation:

y = max(0, x) (9.1)
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Figure 9.1: Feedforward neural network with one hidden layer.
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Figure 9.2: CNN convolution layer (AlexNet first convolution layer).

9.1.2 Convolutional neural network

As a variation of DNN, CNN have been designed for the specific task of image
analysis. In this type of network, a layer does not consist of logistic functions on all
previous neurons weighted sums, but of convolutional filter banks instead. These
filter banks replace the weights of the fully-connected (FC) layers from the MLP,
and have the advantage of being more adapted to higher relations between neighbor
pixels. Fig 9.2 shows an example of convolutional layer. In this example (which
corresponds to the first convolutional layer of the CNN AlexNet (Krizhevsky et al.,
2012) ), 96 3D filters of dimensions 11× 11× 3 are convoluted on an input image
of dimension 227 × 227 × 3, leading to 96 × 11 × 11 × 3 = 34848 weights. As a
comparison, a single neuron connected to all pixels of the input image would lead to
227× 227× 3 = 154587 weights.

The output of the convolutional layer can be seen as 96 filtered and scaled grayscale
versions of the input image. A non-linear function (ReLU) is then applied on this
output.

Just as MLPs, some CNNs consist of several layers in series (Krizhevsky et al., 2012).
Others are designed using more complex architectures with parallel layers or cycles
(Szegedy et al., 2015).

Fig 9.3 illustrates the convolutional layers of AlexNet (Krizhevsky et al., 2012), and
a visualization of the neurons based on Wei et al. (2017). It can be observed that
the first convolutional layers are trained to extract general low-level features from
images such as blobs and edges. The following layers allow extraction of higher-
level features, such as texture patterns and even objects parts, more dependent on
the specific training images.
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Figure 9.3: Convolutional layers and neuron visualization of AlexNet trained on the
ImageNet dataset. Reproduced from Wei et al. (2017).

9.1.3 Transfer learning and fine-tuning

In practice, large image-recognition CNNs are rarely trained from scratch. Their
training has an extensive computational cost, which can be several weeks with a
single GPU (You et al., 2017). Moreover, for an efficient training, a large dataset
is needed. As an example, the state-of-the-art image-recognition DNNs are gen-
erally benchmarked at the ’ImageNet Large Scale Visual Recognition Challenge’
(Krizhevsky et al., 2012). They are trained on a dataset of 1.2 million images labeled
into 1000 categories, a subpart of the ImageNet dataset (Deng et al., 2009).

Instead of recording and labeling a large dataset, and training a CNN on it for weeks
for each new specific object-recognition task, an existing pre-trained CNN can be
adapted for that task. As explained above, the first layers of a CNN encode generic
features which can be relevant for a wide range of tasks. On the opposite, the last
layers encode more specific features, allowing classification into categories, such as
the 1000 categories of the ImageNet dataset. To avoid a complete retraining of a
CNN, the first layers of a pre-trained model can be used as a basis, and the last
layers can be either replaced by new ones or fine-tuned by pursuing their training
on a smaller dataset including new images. The final layer can also be replaced, to
classify a few types of object rather than the 1000 categories, or for a regression task.
The number of parameters to train is much lower in those cases, decreasing the risk
of overfitting and the computational cost.

9.1.4 Representing a MoCap sequence as an image

Laraba et al. (2017) used transfer learning and fine-tuning on a pre-trained CNN
model (GoogleNet, Szegedy et al. 2015), and adapted it for the classification of MoCap
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Figure 9.4: (a) Similarity between 3D axes and RGB channels (Reproduced from
Laraba et al. 2017). (b) representation of a MoCap sequence as an RGB image.

sequences. As the input layer of the CNN needs an RGB image, they proposed a
representation of a MoCap sequence as an image, as illustrated in Fig 9.4. They used
the similarity between the 3D axes of MoCap data (x, y and z) and RGB images
(red, green and blue channels, as illustrated Fig 9.4 (a)). They transformed MoCap
data into the RGB scale with a discretization and normalization of each 3D axis
on a [0-255] scale (see Fig 9.4 (b)), and resized the image linearly to fit the input
size of the model (227× 227 pixels). The result is a striped abstract image where
each stripe corresponds to a marker trajectory. Using this technique, they fine-tuned
GoogleNet to recognize actions in various3D MoCap datasets, and outperformed the
recent literature in most cases.

9.2 Methods

In this Section, a method inspired by Laraba et al. (2017) is proposed for gesture eval-
uation, using transfer learning and a final regression layer on participant levels. The
proposed method is generalized to any type of motion representation as explained
in Section 9.2.1, and relies on two principal transfer learning steps (see Section 9.2.2).
The pre-trained CNN used as a basis was AlexNet (Krizhevsky et al., 2012), trained
on a subset of the ImageNet dataset (1.2 million images labeled into 1000 categories).
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Figure 9.5: Eight Bafa techniques represented as abstract images. (a) Global posi-
tions represented as RGB images. (b) Features (global positions, local quaternions,

relational and ergonomic features) represented as grayscale images.

AlexNet was selected as proof-of-concept for its relative simplicity and small number
of parameters compared to other available pre-trained models. Note that GoogleNet
(Szegedy et al., 2015) and SqueezeNet (Iandola et al., 2016) were also tested with var-
ious learning parameters without success (random results for the regression of the
skill level).

9.2.1 Representing features as an image

As discussed in the previous chapters, different low or higher-level representations
of motion can be used, and their use may have various advantages and drawbacks.
Higher-level features are assumed to be easier to interpret, while low-level features
provide a complete description of motion. Any type of motion feature could be
used as an abstract image for the training of a CNN. However, as features are not
necessarily three-dimensional, the abstract images would be grayscale (i.e. with only
one color channel). As large pre-trained CNNs (including AlexNet) generally use
RGB images, a 1D feature is simply replicated on the three channels. Apart from
this, the same channel-normalization and image-scaling procedures as Laraba et al.
(2017) are applied, resulting in abstract images as illustrated in Fig 9.5.

9.2.2 Two-step transfer learning

Abstract images are inevitably different from the images used in the training of the
original pre-trained model. The model should hence be first adapted for interpreta-
tion of this new type of image. Secondly, the goal of the final model is the regression
of the participant level from these abstract images. The proposed method relies on
a two-step transfer learning process, taking advantage of the multiple information
available on the dataset, including both the gesture category and the participant
level. Fig 9.6 illustrates the two-step transfer learning process:
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• First, a pre-trained AlexNet CNN is adapted for the classification of the gesture
category. The last two FC layers of AlexNet are replaced by two smaller ones,
with 64 neurons for the first one, followed by a ReLU function, and 8 neurons
for the last one, followed by a softmax function, allowing classification of the
eight Bafa techniques. This model is trained with the eight Bafa technique
dataset (n = 1660), using a large learning rate for the last two layers (0.01)
and a learning-rate 50 times smaller (0.0002) for fine-tuning of the AlexNet pre-
trained layers. For the training, mini-batches of 512 images are used. This first
step aims at a gross interpretation of the abstract images, in order to distinguish
different types of gestures.

• Secondly, the model is further adapted for the prediction of the participant
level. To that end, the last layer is replaced by a FC layer with a single output,
allowing the regression of the participant skill level. For each Bafa technique,
a model is trained of the corresponding data subset (n ∼ 208), using a larger
learning rate for the last layer (0.0025) than for the rest of the network (0.00005).
For this training, mini-batches of 20 images are used. This second step allows
a finer interpretation of the images of a single category, aiming at extracting
discriminant features for different levels of expertise.

The optimal learning rates and batch sizes were determined with a manual iterative
procedure.

9.2.3 Experiments

To test the validity of the proposed method, various experiments are conducted.
First, the two-step transfer learning procedure are first tested in various configura-
tions, including different feature types and post-processing (MIRFE), either for the
classification of Bafa techniques (Step 1) or for regression of the skill level (Step 2).
The results of the regression are then compared with those of the statistical-based
method presented in Chapter 8.

9.2.3.1 Step 1: Bafa classification CNN

To test the validity of the first step of the transfer learning procedure, the classifica-
tion model (see Fig 9.6) will be trained with a LOPO procedure, and the validation
accuracy will be calculated from the left-out-participant predictions. To that end, 12
models (one for each participant) will be trained with various input feature sets:

1. Joint 3D global coordinates (reference placed on the hips)1

13D coordinates of 21 joints (pelvis, thorax, neck, back head and forehead, both shoulders, elbows,
wrists, hands, hips, knees, ankles, feet) but due to the placement of the reference on the hips, the
x-coordinates of both hips are always zeros, leading to only 61 useful features.
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Figure 9.6: Two-step transfer learning procedure. Step 1: a CNN is designed for
classification of the eight Bafa techniques. Step 2: a regression CNN is designed for
the prediction of the participant skill level on one Bafa technique. (AlexNet image

adapted from Han et al. 2017).
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(a) represented as grayscale images (F = 61 1D features)

(b) represented as colored images (F = 21 3D features)

2. Joint 3D local coordinates (reference placed on each parent joint)2

(a) represented as grayscale images (F = 53 1D features)

(b) represented as colored images (F = 21 3D features)

3. Joint global quaternions (reference placed on the hips) (F = 64 1D features)3

4. Joint local quaternions (reference placed on each parent joint) (F = 64 1D fea-
tures)

5. Continuous relational features (Müller feature set without thresholding, see
Section 2.3.3) (F = 40 1D features)

6. Ergonomic features (including 32 ROM from Table 2.1, 36 Taijiquan ergonomic
principles from Table 6.1, and 11 CoM kinematic features) (F = 79 1D features)4

7. The combination of joint 3D global coordinates and relational features (F = 101
1D features)

8. The combination of joint 3D global coordinates, joint local quaternions, rela-
tional features and ergonomic features (F = 244 1D features)

In each case, the resulting images are linearly resized to fit the input size of the model
(227× 227 pixels).

To verify the effectiveness of MIRFE, this experiment will be conducted both with
and without the MIRFE feature post-processing step.

9.2.3.2 Step 2: level regression CNN

To test the validity of the two-steps transfer learning procedure, CNNs for the re-
gression of the participant level will be trained, with and without a pre-training of
the intermediate layers with step one (see Fig 9.6). The models will be trained with
a LOPO procedure, and the correlation between the annotations and the predictions
of the left-out-participants will be extracted.

As a comparison with the two-step transfer learning procedure, a direct transfer
learning procedure will be used. In this procedure, the pre-trained model is directly
adapted for the prediction of the participant level. To that end, layers FC7 and FC8
of AlexNet are removed, and a final FC layer with a single output is directly added
after FC6. A learning rate of 0.001 is used for the last layer, and 0.00005 for the rest
of the network.

253 non-zero features from 3D coordinates of 21 joints.
3Quaternions of 16 segments: head, thorax, both arms, forearms, hands, hips, thighs, calves, feet.
4The CoM kinematic features include its 3D coordinates, 3D speeds, 3D accelerations, as well as its

normal speed and acceleration.
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Feature type No MIRFE MIRFE
1.(a) Joint 3D global coordinates (grayscale) 90.65% 95.98%
1.(b) Joint 3D global coordinates (RGB) 95.55% 97.5%
2.(a) Joint 3D local coordinates (grayscale) 62.49% 94.74%
2.(b) Joint 3D local coordinates (RGB) 74.06% 95.81%
3. Joint global quaternions 90.78% 94.18%
4. Joint local quaternions 88.72% 93.23%
5. Relational features 96.15% 97.69%
6. Ergonomic features 91.76% 95.18%
1.(a) and 5 90.60% 97.82%
1.(a), 4, 5 and 6 84.39% 95.26%

Table 9.1: Validation of the first transfer learning step: classification accuracy of the
Bafa techniques.

9.3 Results and discussion

9.3.1 Step 1: Bafa classification CNN

Table 9.1 displays the results obtained for the first transfer learning step, i.e. the
prediction accuracy for classification of the Bafa techniques. It can be observed that
for any type of feature used by the model, the use of the MIRFE procedure, providing
features less dependent on morphology, yields better prediction accuracy. With the
MIRFE process, the best results were obtained for the combination of global positions
and relational features with an accuracy of 97.82%. This model is thus able to classify
the eight Bafa techniques from abstract images including both global positions and
relational features processed with MIRFE, with an error of 2.18%.

9.3.2 Step 2: level regression CNN

Table 9.2 displays the correlations between the prediction of the models with the
annotations, using the combination of global positions and relational features. It can
be observed again that the use of MIRFE yields better correlations either with a direct
transfer learning from AlexNet to a regression CNN, or with a two-step transfer
learning with an intermediate step on the classification of the Bafa techniques. The
best result is obtained with the two-step transfer learning, leading to a correlation of
0.518. On the opposite, the worst result is obtained for the two-step transfer learning
without the use of MIRFE, leading to a correlation of 0.329. This might be due to an
ineffective intermediate training of the model. It can be noticed that the classification
accuracy in this configuration was only 90.60% (see Table 9.1), i.e. a classification
error of 9.4%, against 2.18% with the use of MIRFE.
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Method No MIRFE MIRFE
Direct transfer learning 0.357 0.454
Two-step transfer learning 0.329 0.518

Table 9.2: Prediction correlations with annotations for various skill-level-regression
CNNs.

Figure 9.7: Left: predictions of all motion sequences for each participant, against
their skill level. Right: prediction RMSE for each participant, against their skill level.

These correlations are low in comparison with the results obtained with the method
proposed in Chapter 8. As a reminder, the best correlation (R = 0.909) was obtained
with EN-regression on 60 PCs extracted from means and standard deviations of mo-
tion features. However, as shown in Fig 9.7, the prediction error seems to depend on
the skill level of the participant, and is thus not fully random. It can be observed in
Fig 9.7 (right graph) that for all the participants with a skill level between 6 and 9, the
prediction RMSE is below 0.65, and does not seem dependent of the skill level. On
the opposite, for the extreme participants (the two best ones, P1 and P2 and the two
worst ones, P11 and P12), the prediction RMSE is above 1.2, i.e. worse than chance.5

A possible interpretation is that the model is not suited for generalization on unseen
skill level values. In other words, it cannot predict values far from the ones used for
its training, as the corresponding training sample is missing.

Based on these considerations, Tables 9.3 and 9.4 respectively show the correlations
between annotations and predictions, without two extreme participants (P2 and P11)
and without four extreme participants (P1, P2, P11 and P12). It can be observed in
these tables that the predictions lead to a correlation of 0.573 without two extreme
participants (see Table 9.3), and 0.809 without four extreme participants (see Table
9.4), both with the two-step transfer learning and MIRFE methods. These results
suggest that with a larger dataset, including a large number of beginners and experts,
the overall accuracy of the model could be improved.

5RMSE would be about 1.0 for N (0, 1)-random predictions for a standardized skill-level.
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Method No MIRFE MIRFE
Direct transfer learning 0.322 0.461
Two-step transfer learning 0.319 0.573

Table 9.3: Prediction correlations with annotations for various skill-level-regression
CNNs, all participants except P2 and P11.

Method No MIRFE MIRFE
Direct transfer learning 0.755 0.780
Two-step transfer learning 0.756 0.809

Table 9.4: Prediction correlations with annotations for various skill-level-regression
CNNs, all participants except P1, P2, P11 and P12.

9.3.3 Comparison with the statistical-based model

In Chapter 8, a method was proposed for gesture evaluation, based on an EN-
regression on PCs extracted from means and standard deviations of motion features.
For comparison purposes, Fig 9.8 shows predictions results and RMSE for this model.
This figure can be compared with Fig 9.7. It can be observed that for the statistical-
based model, the two largest RMSE are obtained for the lowest-skilled participant
(P11), and the best one (P2). However, all RMSE are below 0.7, showing that the
statistical-based model can generalize from a small dataset consisting of only 12 par-
ticipants. The next lowest/highest-skilled participants (P1 and P12 respectively) are
evaluated as well as most of the other participants, with an RMSE of about 0.4.

9.3.4 Limitations and improvement prospects

In this chapter, the use of deep learning for gesture evaluation is explored. An adap-
tation of the method proposed in Laraba et al. (2017) is presented, and serves as a
proof-of-concept. For this purpose, AlexNet was used as a basis. However, various
architectures could be used instead, and vast exploration is still needed on the sub-
ject. Various types of intermediate layers could also be used, including combinations
of convolutional and FC layers with different hyper-parameters.

However, a more in-depth exploration on the subject would require a larger dataset.
In the present work, the number of samples for the training of the regression network
was in average 208 for each Bafa technique. Nonetheless, a first insight of the interest
of the proposed technique was highlighted with this dataset. It was shown that the
performance of the model was significantly better than random predictions, and that
the results were better for mid-level participants. It seems to show that better re-
sults could be achieved with a larger dataset, including more experts and beginners,
allowing a larger coverage of the variability of skill levels in Taijiquan.
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Figure 9.8: Prediction results for the statistical-based model from Chapter 8, based
on EN-regression on 60 PCs extracted from means and standard deviations of global
positions and relational features. Left: predictions of all motion sequences for each
participant, against their skill level. Right: prediction RMSE for each participant,

against their skill level.

With a larger dataset, various prospects for improvement could be explored. First,
the use of more complex model architectures than AlexNet could be tested and com-
pared. Secondly, a very large dataset would allow the development of new types of
deep-learning-based models trained from scratch. These models could take advan-
tage of the particular type of data that are motion sequences, including the spatial
aspect, the higher relations between joints of the same limb, as well as the temporal
aspect. For instance, the use of Recurrent Neural Network, particularly adapted for
the modeling of time series, could be explored (LeCun et al., 2015). Particular con-
volutional filters could also be developed, taking into account the type of input data.
For instance, particular CNNs with 1D filters have recently been used in speech pro-
cessing for automatic translation (Tachibana et al., 2017). The input is a spectrogram,
i.e. a large set of temporal variables, similar to a motion sequence. Finally, multitask
learning could be explored. Multitask learning allows the simultaneous modeling
of different types of output from a single type of input. The use of a shared repre-
sentation in the model for the learning of different tasks can result in an improved
efficiency for each separate task (Caruana, 1997). For instance, the use of information
on the category of gesture or on the participants, including morphology, age or sex,
would allow the model to take these factors into account in the modeling of expertise.
This approach can be compared to MIRFE, though the process would be handled by
the model itself.

In the proposed image representation of motion data, the order of the features or
coordinates is arbitrarily defined. However, different results could be obtained ac-
cording to the order of the variables, i.e. of the stripes. As convolutional filters are
applied on neighbor pixels, the relations between neighbor variables are more im-
plied at the beginning of the modeling process. In the present study, left and right
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pairs of joints are alternated in a specific order from the head to the feet. It could
be interesting to group the stripes of the joints that are closer in the skeleton. How-
ever, a new type of model specifically designed for motion data could directly take
account of the skeleton topology of the data. For instance, convolution filters in the
first layer could be applied separately on the joints of each limb or segment of the
body, independently of the order of the variables.

9.4 Conclusion

In this chapter, a new gesture evaluation model based on deep learning is presented.
For that purpose, motion sequences are represented as RGB images, for their use with
pre-trained image classification models. The proposed model is based on AlexNet,
and a two-step transfer learning procedure is applied in order to adapt it for skill
level regression. First, the model is modified to allow classification of the eight Bafa
techniques, and is trained on the entire dataset. Secondly, the classification layer is
replaced by a regression layer, allowing the prediction of the skill level. A model
is trained separately for each Bafa technique. The results showed that the two-step
transfer learning procedure coupled with the use of MIRFE on the input features
allowed better predictions than direct transfer learning. Although the results are
significantly lower than those of the method presented in Chapter 8, it could be
observed that the predictions were better for mid-level participants than for extreme
ones (the lowest-skilled and the highest-skilled). A larger dataset including more
experts and beginners could hence lead to an improvement of the performance of
the model. These results show the potential of the use of deep learning for gesture
evaluation applications.
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10.1 Introduction

Gesture evaluation has applications in various areas, such as medicine, education
and serious gaming. It can provide a quantified measure of the quality of a ges-
ture, allowing both the tracking of a patient’s progression, and the objectivity of the
evaluation. However, more information could be obtained from data than a single
score. Feedback information could be extracted from the evaluation model about
how the gesture was performed, and how it should be modified to produce a better
skill level prediction. Users of such a feedback system could benefit from this more
interpretable information, allowing a more efficient training. This system could be
used either as an automated supervisor, or as a tool for teachers.

However, due to the newness of MoCap technologies, the small but emerging liter-
ature on gesture evaluation as presented in Chapter 3 is not yet focusing on the use
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of the proposed evaluation models for actual training and supervision. Nonethe-
less, the few works mentioned in Section 3.4.4 establish some reference points in that
direction. Young and Reinkensmeyer (2014) proposed an original method for syn-
thesis of a new motion corresponding to a particular skill level. From a score, they
generate features (eigenpostures and PMs) that would predict this score (see Sec-
tion 3.4.3), and then synthesize the corresponding gesture from a ’reciprocal process’
of the eigenpostures (following a reciprocal procedure of Troje (2002) for eigenpos-
tures extraction). Although they used this system to produce general interpretations
on the analyzed discipline (competitive diving), the synthesized gestures could be
compared to the user’s own performance, allowing feedback. In that direction, Pirsi-
avash et al. (2014) used the same idea of ’reciprocal process’ of their evaluation model
(based on pose-DCT and L-SVR , see Section 3.4.3) to generate new features corre-
sponding to the gradient of the model. They first compute the gradient of the L-SVR
model, and then perform an inverse-DCT on this gradient, providing information on
the modification of the joint positions that would improve the score.

In this chapter, a novel generic method for visual feedback based on synthesis is
proposed. From a given score, a new motion sequence (or a new feature set of
any type) is synthesized from a weighted average of gestures from a pre-processed
dataset. The synthesis method, based on GRNN, does not require the ’reciprocal
process’ of any specific model or features, and can hence be used with any gesture
evaluation model that allows the prediction of a continuous score. The method could
even be used for direct interpretation on experts’ annotations, without any gesture
evaluation model.

From the synthesized data (either a motion sequence or a feature set), three types of
feedback information are generated: (i) a visual feedback, based on the synchronized
visualization of the user’s performance with the synthesized motion sequence, (ii) a
striped-image representation of the differences between the user’s features and the
synthesized ones, and (iii) a striped-image representation of the Euclidean distances
between the corresponding markers of both motion sequences.

10.2 Method

10.2.1 Synthesis-based feedback loop

Fig 10.1 shows the diagram of the proposed feedback method. First, a motion se-
quence performed by a user is recorded and the skill level of the gesture is predicted
using an evaluation model. Any of the regression model presented above can be
used. An increment (a hop) is then applied on the predicted score, resulting in an
improved score. From this improved score, a synthesizer generates a new artificial
motion sequence and/or a new feature set corresponding to this score. The synthe-
sis is based on a weighted average of sequences/features extracted from the dataset.
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The synthesized data are then compared with the original ones, allowing extraction
of various types of feedback:

1. The synthesized sequence is superimposed with the original one, and both can
be visualized synchronously. It allows a direct visual comparison showing the
differences between both sequences to the user.

2. The difference between the original features and the synthesized ones is com-
puted, and is illustrated as a striped image with scaled colors, where each stripe
corresponds to the temporal evolution of a feature. Note that the features can
be joint global 3D positions. A raw motion sequence can be seen as a particular
type of feature set.

3. The Euclidean distances between each corresponding marker of the synthesized
and original sequences are computed, and are also illustrated as a striped image
(one stripe per joint).

10.2.2 Skilled-gesture synthesis

The key part of the proposed feedback system relies on the synthesis of a gesture cor-
responding to a particular skill level. To synthesize new motion data corresponding
to a given skill level, a GRNN (or Gaussian-kernel regression) is used for the regres-
sion of a motion sequence with the skill level as input variable. Fig 10.2 illustrates
the underlying process of the proposed synthesis method. For each sequence of a
pre-recorded dataset, scores are computed using the evaluation model from which
feedback is requested. Annotations could be used instead if they are provided for
each sequence.1 For a new sequence performed by the user of the system (referred
to below as the test sequence), the skill is evaluated, and a hop (h) is applied to this
score, as explained in Section 10.2.1. All these scores, denoted by si, are then used
as input for the regression. The output of the regression is either a motion sequence
(termed below as the feedback sequence), denoted by Xs, or any type of feature set Fs.
Note that a motion sequence can be seen as a particular type of feature set. The same
approach can thus be used for both.

The dataset of motion sequences is adapted for a more efficient weighted combina-
tion of several motion sequences, and for optimal comparison with the user’s gesture,
as illustrated in Fig 10.3:

1. First, all motion sequences are scaled to the size of the user using skeleton
scaling.2

1If only general annotations are given for the participants of the dataset, only a few different values
(12 in the case of the Taijiquan dataset) would be used as input for the training of the GRNN (i.e. as
kernels), resulting in a sparse regression space.

2MIRFE cannot be used for this purpose as it only extracts residual features that would result in
an irrelevant 3D visualization. Nevertheless, MIRFE is used on the features used for the stripe image
displaying feature differences.
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Figure 10.1: Synthesis-based feedback loop process. The integration of the feedback
by the performer can be viewed as a conceptual closed-loop process for the user’s

progression.
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Figure 10.2: Skilled gesture synthesis workflow.

2. For each motion sequence of the dataset, a rigid transformation of the marker
horizontal coordinates (x and y-axes) is applied to minimize the sum of the dis-
tances of the markers with the corresponding markers of the test sequence. This
transformation is performed by using the Kabsch algorithm (Kabsch, 1976), al-
lowing the best fitting of two paired sets of points. The algorithm is performed
only on the horizontal coordinates to avoid a translation or rotation on the ver-
tical axis. This would lead to a counterintuitive visualization of the generated
motion sequence, with a virtually modified ground elevation and inclination
for the synthesized sequence.

3. Each motion sequence of the dataset is then aligned temporally with the test
sequence using DTW. This step allows a more relevant synchronized visualiza-
tion of the final feedback.

As illustrated in Fig 10.2, the test sequence itself is then added to the dataset (denoted
by X1), so that the synthesis can produce a more similar gesture if a close skill level
is provided as input of the synthesizer (i.e. for a small h). This step allows a more
relevant comparison of the feedback sequences with the test sequence.

Finally, new motion data Xs and/or Fs are synthesized from the improved score s1 + h
using the following equations:
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Figure 10.3: Data adaptation for better comparison with the user’s motion. The red
skeleton represents the test sequence performed by the user of the feedback system.
The blue skeleton represents a sample of the dataset. Firstly, the sample is scaled to
the size of the user. Then, horizontal coordinates are fitted to the test sequence using

the Kabsch algorithm. Finally, data are aligned temporally using DTW.

wi = exp(− (si − (s1 + h))2

2σ2
smooth

) (10.1)

w′i =
wi
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i=1 wi
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n

∑
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Xiw′i (10.3)

Fs =
n

∑
i=1

Fiw′i (10.4)

where σsmooth is the smoothing parameter of the GRNN. This parameter was manu-
ally set to 0.3 in the experiment. The choice of this parameter is discussed in Section
10.4.

The synthesized motion sequence Xs can be visualized in synchronization with X1

(Feedback 1, see Fig 10.1), the distances between their corresponding markers can be
visualized as a striped image (Feedback 3, see Fig 10.1), or the difference between Fs

and F1 can also be visualized as a striped image (Feedback 2, see Fig 10.1).

10.2.3 Experiments

To validate the proposed synthesis-based feedback method, the skill-level of the syn-
thesized data can be evaluated with the gesture evaluation model. For this experi-
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ment, the best gesture evaluation model proposed in this research is used (feature
statistics PCs EN-regression, see Chapter 8). The resulting score can then simply
be compared to the input score of the synthesizer. As an experiment, feedback se-
quences are generated for each sample of the 8-Bafa dataset, for five improved scores
from the initial predicted score (h = 0) to 12 (h = 12− s1). On these synthesized
sequences, the level is predicted using the evaluation model, allowing to verify the
assumption that the generated sequence is actually better than the test sequence. The
results are presented in Section 10.3.1.

Besides quantitative validation, some examples are qualitatively interpreted, to show
the interest of the proposed feedback method. These examples are presented in
Section 10.3.2.

10.3 Results

10.3.1 Quantitative validation

Fig 10.4 shows the means of the level predictions of the synthesized sequences for
each participant, each Bafa technique, and for different improved scores (referred
to as target score in the graph). For each graph, corresponding to the results for
one participant, the blue star shows the reference level of the participant (as anno-
tated by the teachers). Each curve, referred to below as feedback curve, corresponds
to the mean prediction of the feedback sequences for all renditions of one gesture
by one participant, according to the improved score. The origin of each feedback
curve corresponds to a feedback without any improvement (h = 0). The x-axis thus
corresponds to the predicted score of the original sequence (s1), and the y-axis to
the prediction of a synthesized sequence corresponding to this level. Therefore, each
curve should ideally start from the blue star. Then, as the improved score is increased
(h > 0), the synthesized sequence should be of a greater quality, leading to a higher
prediction, ideally equal to the improved score. The curves should hence follow the
dashed line. It can be observed that for most of the participants, the curves seem to
follow this line at the beginning. As the improved score reaches the maximum score
from the annotation scale (10), the curves flatten and generally tend towards this
maximum. This result is due to the fact that the feedback sequences are generated
through an averaging of the available sequences in the dataset. As the best sequences
of the dataset are rated about 10 by the gesture evaluation model, corresponding to
the skill level of an expert, the synthesizer cannot generate sequences with a higher
score. Note that for P1, some curves exceed the dotted line. This is due to the fact
that some predicted scores from the available dataset (P2 to P12, following the LOPO
procedure) are higher than 10.
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Figure 10.4: Validation of the feedback method. The level of the feedback sequences
is predicted back by the gesture evaluation model (y-axis) and confronted to the
improved score (the target score, x-axis)). Each curve corresponds to the mean of the

predictions for all renditions of one Bafa technique by one participant.
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10.3.2 Qualitative validation

In this section, a few examples of the use of the feedback system will be presented,
in order to show its practical interest as an improvement tool for the user. Fig 10.5
shows the result of the feedback system for a rendition of G8 (Part the wild horse’s
mane) performed by P11, the lowest-skilled participant. The prediction of the origi-
nal sequence was s1 = 5.55. A hop of h = 4.45 was applied to generate a sequence
corresponding to an improved score of 10. The gesture evaluation system was then
used on the synthesized sequence and predicted an actual skill level of 8.58. The left
graph shows a frame at the beginning of the gesture. It can be observed that the
original skeleton (in red) is tilted back. On the opposite, the feedback skeleton seems
more stable, with a more vertical trunk (cfr stability features, see Section 6.2). The
right graph shows a frame at the end of the gesture. At this moment of the gesture,
the feet of the feedback skeleton seem to be further away, both in frontal plane (side-
ways) and in sagittal plane (forward-backward direction), offering a larger support
base. The attacking arm (left arm) is aligned vertically with the attacking foot (left
foot). The head and the torso are also directed towards the attacking limbs (cfr align-
ment features, see Section 6.3). Both arms and both legs are more widely opened,
and are more similar to the shape of a sphere. This spherical shape of the body is
an important concept of Taijiquan (Caulier, 2010). Although the gesture evaluation
model is not trained with any particular feature involving this spherical shape, the
visual feedback seems to allow this observation, showing its interest. Even though
the algorithm is based on rather low-level features interpretation (global positions
and relational features), high-level interpretations can still be made by the human
observer from the synthesis-based feedback system. It is important to note that these
interpretations are made from an interactive 3D visualization of the sequences, al-
lowing a better observation than allowed in the 2D snapshots shown in Fig 10.5.

The system also allows a visualization of the feedback sequence evolution, for dif-
ferent values of h. Fig 10.6 shows five feedback sequences corresponding to a linear
ramp of h from 0 to 4.45. The colors of the feedback skeletons follow a mapping from
red (for h = 0) to blue (for h = 4.45). It can be observed that for each increment of h
the feet move away from each other, until they reach their optimal position in blue.
It seems that for the first increments of h, the displacement of the feedback sequence
is larger. The differences between the feedback sequences seem more subtle after a
few increments. The difference between the last two increments seems to essentially
lie in the head direction, and the wider opening of the left arm.

Fig 10.7 shows the results of the feedback system for a rendition of G11 (Kick with
the heel) performed by P11 (larger images are provided in Appendix B with axes,
for better readability). Graph (a) shows 3D visualization of the original and feedback
sequences at the top of the kick (at about 45% of the sequence duration). It can be
observed that the feedback sequence, in blue, has a higher kicking foot. Moreover, its
left hand is vertically aligned with its left foot, and the head has the same direction.
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Figure 10.5: Visual feedback for a rendition of G8 (Part the wild horse’s mane) by
P11 (the lowest-skilled participant). Red: original sequence. Blue: feedback sequence
with an improved score of 10 (h = 4.45). Left graph: gesture beginning, side-view.

Right graph: gesture ending, front-view.

Both arms are opened more widely, and the position seems more stable, as the trunk
is vertical.

Graph (b) displays the distances between the markers of the original sequence (red
skeleton from Graph (a)) with the markers of the feedback sequence (blue skeleton
in Graph (a)) across time. A large distance can be observed for the left foot, left ankle
and left knee joints throughout the sequence. A peak for these distances occurs after
about 60% of the sequence duration. A 3D visualization of the corresponding frames
showed that this peak is due to the fact that the user laid down the left foot sooner
than the feedback sequence. In other words, the left foot of the feedback sequence
stays high for a longer time than the left foot of the original sequence. Two other
points of interest can be raised from this graph, one for the left arm (especially the
left hand), and one the right arm. A look at Graph (a) confirms this, as both arms of
both skeletons are far apart.

Graph (c) displays the differences between joints global coordinates. It offers thus a
few more information than the previous graph, emphasizing the important axes. It
can be observed more clearly on this graph that the errors on the left leg joints seem
synchronized with the errors on the left arm. Moreover, it can be seen that major
differences stand for the z-axis (vertical) for the left leg joints, and the y-axis (lateral)
for both arms.

Finally, Graph (d) displays the differences between some of the Taijiquan ergonomic
principles. Though they were not the best feature subset for use with the proposed
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Figure 10.6: Visual feedback for a rendition of G8 (Part the wild horse’s mane) by P11
(the lowest-skilled participant), for different values of h (linear ramp of five values
from 0 to 4.45). The colors of the skeleton follow a color map from red to blue
corresponding to h (0 = red, 4.45 = blue). (a): front view. (b): upper view. (c):

feedback predictions.
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gesture evaluation models, they still allow an interesting feedback that can be in-
terpreted by a user or a teacher. For instance, a first deep blue stripe concerning
verticality (F3 in Table 6.1) appears throughout the entire sequence. This stripe indi-
cates that the trunk should be more vertical, to provide more stability to the position.
A second blue stripe indicates a wrong vertical alignment between the right shoulder
and the right hip (F6 in Table 6.1). A third deep blue stripe indicates a wrong frontal
alignment of the left shoulder with the left wrist (F11 in Table 6.1). Finally, the fourth
deep blue stripe indicates that at the end of the gesture, the left elbow is too far be-
hind the body (F18 in Table 6.1). All these indications can generally be confirmed by
a visualization of the 3D sequences.

10.4 Discussion

In this chapter, an original method for gesture evaluation feedback is presented. The
method is validated quantitatively and qualitatively.

For the quantitative validation, the synthesized feedback sequences are evaluated
back using the gesture evaluation model, in order to verify if the predicted skill level
corresponds to the desired skill level provided at the input of the synthesizer. The re-
sults are consistent, as the prediction generally follows the desired skill level, and are
bounded to the maximum level available in the dataset. Nonetheless, the smoothing
parameter of the synthesizer (σsmooth, see eq. 10.1) could be tuned according to the
desired behavior of the synthesizer. A lower σsmooth would theoretically allow the syn-
thesizer to generate sequences better corresponding to the input score. As σsmooth is
increased, wi in eq. 10.1 tends towards 1, giving the same weight to all the sequences
of the dataset (flat weighting). This allows a more generalized feedback sequence,
as more sequences from the dataset are taken into account. However, the quality
of this sequence is also more limited. For an infinite σsmooth, the synthesizer would
always produce the same sequence resulting from the average of all sequences of the
dataset, corresponding to the average skill level of the dataset. This would result in
a flat feedback curve. On the opposite, as σsmooth tends towards zero, the weighting
becomes sharper and only the sequence with the closest prediction to the targeted
score is considered in the synthesis. The synthesized sequence is therefore simply a
copy of this sequence, and the evaluation will inevitably lead to the same score. In
this case, the feedback curve will follow a step function following the dashed line
and limited to the predictions available in the dataset. In this case, the synthesized
sequence will not be generalized at all, as it will copy a single rendition of a gesture
by a single participant.

As qualitative validation, a few examples are presented, showing the practical in-
terest of the method. However, to prove the effectiveness of the method, it should
still be tested in a real situation, by comparing its impact on actual training, with
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Figure 10.7: Feedback for a rendition of G11 (Kick with the heel) by P11 (the lowest-
skilled participant). (a): Visual feedback. (Red: original sequence. Blue: feedback
sequence with an improved score of 10). (b): Marker distances. (c): global positions

difference. (d): Taijiquan features difference.
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self-training and with teacher-supervised training. Nonetheless, the examples pro-
vided in Section 10.3.2 give first indications on the possibilities offered by the pro-
posed method. The synchronized visualization is an intuitive feedback system that
can be easily interpreted by a novice user. Even without a priori knowledge on the
discipline, the user could learn a technique by successive imitation of the feedback
sequences, iteratively adapting her/his own gesture. A particular interest of the pro-
posed method is that the synthesized feedback sequence is comparable to the user’s,
as it was generated from adapted data, and from the user’s data themselves. As
the feedback sequence can correspond to any small improvement step (small h), a
gradual feedback can be provided to the user, allowing a step-by-step progression.
Besides the synchronized visualization, the striped images serve as a more precise
feedback. They allow to highlight particular features that require modification, giv-
ing precise indications to the user. However, these images are harder to interpret
than the synchronized visualization. This type of feedback could have more inter-
est for advanced users or teachers who already know which kind of feature should
be relevant in a particular technique, allowing them to focus on the relevant parts
of the stripe image. Another solution could be a state-machine (similar to Patrona
et al. 2018) that would provide a semantic feedback from pre-defined zones of the
image. For instance, for the ’Kick with the heel’ gesture, there is not much interest
in features indicating the motion of the non-kicking foot as it is supposed to stay
still. For standardized features, a relational feature such as ’the right foot is raised’
(F17 in Table 2.5) could lead to a large feature difference (i.e. a stripe with a strong
color) even if the synthesized foot is a few millimeters higher than the original one.
Moreover, the differences near the beginning or the ending of the sequence may be
due to the inaccuracies of the motion sequence segmentation procedure, and not to
a wrong position of the user.

To improve the feedback method, it could be interesting to derive from the model
the importance of each feature for the prediction. This importance could be obtained
analytically for some models. For instance, in the model proposed in Chapter 8, the
importance of the feature could be derived from the regression coefficients and the
weight of features in the PCs. Otherwise, the importance of each feature could be
extracted experimentally, by analyzing the impact of a modification of a feature in
the prediction. From the importance of each feature, a weighting of the colors in
the stripe images could be applied, in order to propose sharper images, easier to
interpret. The synchronized visualization could also be adapted by highlighting the
most important joints (e.g. by modifying their color, size or transparency).

10.5 Conclusion

In this chapter, a novel feedback method is proposed. The method is based on the
synthesis of new data, either a motion sequence or a feature set, corresponding to a
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desired skill level. To synthesize these data, a weighted average of samples of a pre-
processed dataset is performed. The motion sequences of the dataset are adapted
with three steps, to be more comparable to the user’s motion (the test sequence).
First, each motion sequence of the dataset is scaled to the size of the user. Secondly,
each motion sequence is spatially matched to the test sequence using a rigid trans-
formation minimizing the distances between the horizontal coordinates of the corre-
sponding markers. Thirdly, each motion sequence is temporally aligned to the test
sequence using DTW. Different types of feedback are then extracted by comparing
the synthesized data to the user’s ones: (i) a synchronized visualization of the test se-
quence with the feedback sequence synthesized with any hop of skill improvement,
(ii) a striped image representing the differences between the synthesized features
and the user’s ones, and (iii) a striped image displaying the distances between the
corresponding markers of both sequences.

The proposed model has different advantages compared to the related work. First,
it can be used either with motion sequences, or with any type of motion features.
Secondly, it is independent of the gesture evaluation model. It could be used with
any gesture evaluation model providing a continuous score. It could even be used
for direct interpretation of the scores annotated by teachers, without the need of any
evaluation model.

As quantitative validation, various feedback sequences were generated for different
desired skill levels, and their effective skill level was then estimated by the evaluation
model. The comparison of the prediction with the desired skill level showed the
effectiveness of the synthesis method.

Examples of the use of the feedback method were then proposed, showing its practi-
cal interest for training. The proposed visual feedback is intuitive and can be used by
a novice user. However, the striped-image representations allow a specific feedback
on various features, and allow a more precise interpretation by advanced users or by
teachers. The proposed method could hence be used as an automated supervisor, or
as a tool for a teacher, allowing a more objective supervision.

Finally, the method could be improved in the future, by weighting the feedback for
each feature according to their importance in the used gesture evaluation model.
This would allow a better highlighting of the most relevant features in the striped
images, or the most relevant joints in the motion sequences.
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Conclusions

Original contributions of the thesis

In the present thesis, a framework for the evaluation of the expertise in gestures has
been proposed. This framework follows six main sequential steps.

First, a dataset of Taijiquan expert gestures has been collected and is presented in
Chapter 4. Taijiquan is a general discipline focusing on various aspects of motion.
This dataset is an important contribution to the field, as no public dataset known to
the author was available for the study of gesture evaluation. The proposed dataset
contains a total of 2200 manually corrected and segmented gestures, divided into
13 classes and performed by 12 participants of different expertise levels. The par-
ticipants were ranked by three highly experienced Taijiquan teachers, allowing the
training and validation of new evaluation models.

To deal with the issue of missing markers and improve the data quality, a method for
automatic MoCap data recovery has been proposed, based on the probabilistic aver-
aging of various methods (PMA) and simple constraints on trajectory continuity and
marker distances (see Chapter 5). Results show that PMA used with the constraints
outperforms methods used individually in various conditions, including various gap
lengths, motion sequence durations and number of simultaneous gaps, showing the
robustness of the method.

The next step was the choice and the development of new motion features, adapted
for the representation of expertise. In this context, a large set of features from the
literature was used, including various low-level features as well as relational features
and ergonomic features. Moreover, a new feature set was developed, inspired by
Taijiquan ergonomic principles (see Chapter 6). This high-level feature set allows a
representation of motion in terms of ergonomy, and is assumed to be related with
expertise. However, the best performance in gesture evaluation was not achieved
with this type of feature, showing that global positions and relational features were
more appropriate with the models tested. Further tests should be conducted with a
larger dataset to investigate the use of these high-level features. It is possible that
their relations are complex and that non-linear regression methods would perform
better with these features if a larger dataset is available.

Nevertheless, these features are relevant for feedback interpretation, at least in the
case of Taijiquan gesture evaluation, as illustrated in Chapter 10. They are of particu-
lar interest to the teacher used to this type of motion representation in the teaching of
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Taijiquan. In order to validate their practical interest, a prototype of infield feedback
should be developed, and be tested with various types of features. Moreover, infield
tests should also be conducted in other disciplines than Taijiquan.

The most relevant representation of expertise must then be drawn from the available
features. To that end, a novel method for morphology-independent feature extraction
has been developed (MIRFE, see Chapter 7). The method has been shown to increase
the correlation of features with expertise. Furthermore, MIRFE was validated with
various evaluation models, and generally improved their performance. More specif-
ically, it was shown that evaluation models could be used efficiently with a larger
number of latent variables (PCs or eigenmovement weights), leading to significantly
better predictions. It seems therefore that MIRFE allows the extraction of features
that are easier to interpret by the models. This may be due to the fact that the pro-
cessed features are more comparable between participants, or due to the reduction of
useless and redundant information contained in the features about the participants’
morphology.

From these processed features, a new statistical-based model for the automatic eval-
uation of expertise has been proposed (see Chapter 8). Basic statistics are computed
for each sequence, resulting in a mean and a standard deviation per sequence. PCA
is then applied on these statistics, providing a smaller set of variables from which
a regression model can be trained to estimate a performer’s expertise level. The
proposed model has been designed to be generic, and can therefore be used with
any type of features, and with various regression models. Both linear and non-linear
regression models were tested and validated with the Taijiquan dataset. The best pre-
diction accuracy (R = 0.909) was obtained for an EN-regularized linear regression,
with 60 PCs extracted from global positions and relational feature statistics.

A first exploration of the use of deep learning algorithms was proposed for gesture
evaluation (see Chapter 9). To that end, motion sequences were represented as RGB
images, allowing their use with pre-trained image classification models. AlexNet
was used as proof-of-concept, and a two-step transfer learning procedure allowed its
adaptation for the classification of Bafa techniques first, and then for the prediction
of the level of expertise. The results seem to show that the proposed two-step transfer
learning procedure yields better accuracy than a simple transfer learning. Although
the results were significantly lower than those of the statistical-based model (see
Chapter 8), it could be observed that middle-level performers were evaluated more
accurately than the lowest- and highest-skilled ones. This finding suggests that a
larger dataset including more beginners and experts could allow for a better gener-
alization of the model to new instances, showing the potential of deep learning for
gesture evaluation.

Finally, as a practical application of the gesture evaluation models, a novel feedback
method has been proposed (see Chapter 10). From a test sequence performed by a
user of the system, a feedback sequence or feature set is synthesized, corresponding
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to a desired skill level, and comparable to the user’s performance. Three types of
visual feedback are then proposed, allowing: (i) a synchronized visualization of the
test sequence with the feedback sequence, (ii) a striped image representing the differ-
ences between the synthesized features and the user’s ones, and (iii) a striped image
displaying the distances between the corresponding markers of both sequences. The
proposed method has as advantage that it can be used with any gesture evaluation
model providing a continuous score as input for the synthesizer. Moreover, it can be
used with any type of motion features.

The method was validated quantitatively by verifying that the synthesized sequences
corresponded to the skill level predicted by the evaluation model. Moreover, as
qualitative validation, examples of the use of the feedback method were presented,
showing its practical interest for training. The proposed visual feedback is intuitive
and could be used either by a novice user for automated supervision, or by a teacher
as a tool allowing a more objective supervision.

General limitations and improvement prospects

The present thesis provides original elements to the recent research field of gesture
evaluation. Moreover, the first three steps of the proposed framework, including
the Taijiquan MoCap dataset, the MoCap recovery method and the morphology-
independent feature extraction process (MIRFE) may have interests in a wider area
of research with MoCap data.

A complete pipeline of methods has been successfully developed, from the recording
of expert gestures to expertise evaluation and feedback. The evaluation results are
promising, as well as the feedback examples, showing a possible integration in prac-
tical applications. However, various limitations must be raised, and numerous steps
are still needed for an effective use in hospitals, sports fields, serious games, etc.

First, the proposed methods should be tested on other types of gestures. Although
Taijiquan is assumed to be a relevant use case, a test on other gestural disciplines
would allow to verify if the methods are effective with them. It would also allow to
test if the same configurations in the evaluation models yield the best results (feature
type, regression model used, MIRFE), and if the feedback method allows a relevant
interpretation. According to the disciplines, other methods from the literature might
also be more relevant. For instance, the two methods used for comparison in Section
8.3.4 rely on frame-by-frame relations, and might be more relevant for disciplines
mainly focusing on timing.

Secondly, all results are limited to the size of the Taijiquan MoCap dataset. This
dataset comprises about 208 sequences for each of the eight Bafa techniques, per-
formed by 12 participants. Moreover, the annotation is limited to a global score for
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each participant, and a score per sequence would be more relevant. For the model-
ing of complex relations with multiple non-linear regression, a larger dataset would
be better. More complex relations systematically require more data to be efficiently
modeled. In the present case, the best results obtained for non-linear regression mod-
els in Chapter 8 were based on a single PC (see Table 8.1). It is possible that with a
larger dataset, a larger number of PCs could be used efficiently in these regression
models. In that case, different types of features, describing abstract aspects of motion
(such as ergonomics) and non-linearly related to expertise could yield better results.
Furthermore, deep learning models, which are the state of the art in many other
applications, could also be investigated more thoroughly.

Finally, no validation was proposed for practical infield use of the gesture evalua-
tion and feedback methods. Their interest, either for automated supervision or as
tools for teachers, must still be demonstrated. Practitioners of a discipline may all
have their own perception of a gesture and their own learning strategy, based either
on feeling, observation and intense repetition, and personal mental images. These
strategies may also depend on the level of expertise already reached by the practi-
tioner. According to their level, they may focus either on general aspects of motion
or on specific details. Moreover, as suggested by Caulier (2010) and as discussed in
Chapter 1, the mastering of a discipline can be divided in various steps, including the
body external mechanics, the internal feeling and mental images, as well as a spiri-
tual aspect related to concentration and awareness. The proposed methods, focused
exclusively on external aspects of motion, could be more relevant in some cases, and
for some users, than others.

A practical validation of the proposed methods based on an infield use by an end user
would be complicated at the present stage of development. The accurate recording
of the gestures with a MoCap system like Qualisys is expensive, complicated to set
up, and too intrusive for various applications. Moreover, an automatic and user-
friendly pipeline from the recording to gesture evaluation and feedback must still be
developed.

Nonetheless, recent technologies, including real-time human 3D mesh recovery in
2D images (Güler et al., 2018; Kanazawa et al., 2018) show promising prospects for
the development of low-cost and user-friendly MoCap. This type of technique could
be used in the future with a single camera, either for the fast recording of a dataset,
the recording of multiple performers at the same time, or for easy infield use. Other
recent MoCap technologies such as the Vive TrackersTM allow a friendly use and
are calibrated with virtual-reality headsets, such as the HTC ViveTM (HTC, 2018).
Coupled with virtual reality, a new and more intuitive type of feedback could be
investigated.
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186 ’Kick with the heel’ feedback images

Figure A.1: Visual feedback for a rendition of G11 (Kick with the heel) by P11 (the
lowest-skilled participant). Red: original sequence. Blue: feedback sequence with an

improved score of 10.

Figure A.2: Differences between global positions, for a rendition of G11 (Kick with
the heel) by P11 (lowest-skilled participant). (scale in mm)
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Figure A.3: Distances between the markers of the original sequence with the markers
of the feedback sequence,for a rendition of G11 (Kick with the heel) by P11 (lowest-

skilled participant). (scale in mm)



188 ’Kick with the heel’ feedback images

Figure A.4: Differences between relational features, for a rendition of G11 (Kick with
the heel) by P11 (lowest-skilled participant). The features used are morphology-

independent (processed with MIRFE), and on a standardized scale.
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Figure A.5: Differences between ROMs, for a rendition of G11 (Kick with the heel)
by P11 (lowest-skilled participant). The features used are morphology-independent

(processed with MIRFE), and on a standardized scale.



190 ’Kick with the heel’ feedback images

Figure A.6: Differences between some Taijiquan features, for a rendition of G11 (Kick
with the heel) by P11 (lowest-skilled participant). The features used are morphology-

independent (processed with MIRFE), and on a standardized scale.



Appendix B

Publications

B.1 Journals

• Tits, Mickaël and Tilmanne, Joëlle and Dutoit, Thierry, "Robust and automatic
motion-capture data recovery using soft skeleton constraints and model aver-
aging", PLOS ONE 13, 7 (2018), pp. 1-21.

• Tits, Mickaël and Laraba, Sohaïb and Caulier, Eric and Tilmanne, Joëlle and
Dutoit, Thierry, "UMONS-TAICHI: A Multimodal Motion Capture Dataset of
Expertise in Taijiquan Gestures", Data in Brief (2018).

B.2 Conferences

• Tits Mickaël, Tilmanne Joëlle, Dutoit Thierry, "Morphology Independent Fea-
ture Engineering in Motion Capture Database for Gesture Evaluation" in "4th
International Conference on Movement Computing", London, United Kingdom
(2017), ACM.

• Tits Mickaël, Tilmanne Joëlle, D’alessandro Nicolas, "A Novel Tool for Mo-
tion Capture Database Factor Statistical Exploration" in "3rt International Sym-
posium on Movement and Computing", Thessaloniki, Greece (2016), ACM.

• Grammalidis Nikos, Dimitropoulos Kosmas, Tsalakanidou Filareti, Kitsikidis
Alexandros, Roussel Pierre, Denby Bruce, Chawah Patrick, Buchman Lise, Dupont
Stephane, Laraba Sohaib, Picart Benjamin, Tits Mickaël, Tilmanne Joëlle, Hadji-
dimitriou Stelios, Hadjileontiadis Leontios, Charisis Vasileios, Volioti Christina,
Stergiaki Athanasia, Manitsaris Athanasios, bouzos Odysseas, Manitsaris Sot-
iris, "The i-Treasures Intangible Cultural Heritage dataset" in "IEEE Workshop
on Movement and Computing" , Thessaloniki, Greece (2016), ACM.

• Tilmanne Joëlle, D’alessandro Nicolas, Barborka Petr, Bayansar Furkan, Bern-
ardo Francisco, Fiebrink Rebecca, Heloir Alexis, Hemery Edgar, Laraba Sohaib,

191



192 Publications

Moinet Alexis, Nunnar Fabrizio, Ravet Thierry, Reboursiere Loic, Sarasua Al-
varo, Tits Mickaël, Tits Noe, Zajega Francois, "Prototyping a New Audio-Visual
Instrument Based on Extraction of High-Level Features on Full-Body Motion"
in "Proceedings of the 10th International Summer Workshop on Multimodal
Interfaces - eNTERFACE’15", Mons, Belgique, (2015).

• Tits Mickaël, Tilmanne Joëlle, D’alessandro Nicolas, Wanderley Marcelo, "Fea-
ture Extraction and Expertise Analysis of Pianists’ Motion-Captured Finger
Gestures" in "International Computer Music Conference (ICMC 2015)", 19, 102-
105, Denton, Texas (2015).

• Lourenco Sofia, Tits Mickaël, Wanderley Marcelo, Castro Sergio, "European Pi-
ano Schools of Music Performance: Analysis towards a multimodal approach"
in "International Conference on New Music Concepts (ICNMC 2015)", Treviso,
Italy (2015).

• Lourenco Sofia, Martins Luis Gustavo, Wanderley Marcelo, Tits Mickaël, Megre
Ricardo, "Towards a Multimodal Analysis of European Piano Schools of Music
Performance" in "Conference on Interdisciplinary Musicology" , Berlin, Ger-
many (2014).

B.3 Scientific reports

• Tits Mickaël, Laraba Sohaib, Tilmanne Joëlle, Ververidis Dimitrios, Nikolo-
poulos Spiros, Nikolaidis Stathis, Chalikias Anastasios-Papazoglou, "Intangible
Cultural Heritage Indexing by Stylistic Factors and Locality Variations - FP7 i-
Treasures Deliverable 4.5", 2016-03-13 (2016).



§B.3 Scientific reports 193

View publication statsView publication stats

https://www.researchgate.net/publication/328643275

